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Abstract—Data labeling in computer vision, specifically in
object detection tasks, remains a significant challenge in terms of
efficiency and accuracy. This research article introduces an auto-
labeling algorithm that combines active deep-learning techniques
with the YOLOvV8 model. The aim is to automate the data labeling
process and enhance the performance of the object detection
model. The proposed algorithm automatically labels a portion of
unlabeled data based on uncertainty scores, integrating it into
the training dataset. This approach reduces the need for manual
annotation, which can be time-consuming. The effectiveness of
the method is evaluated using two datasets: tomato and apple.
The results demonstrate a substantial improvement in the Mean
Average Precision score over multiple iterations, highlighting
the enhanced performance of the overall model. Moreover,
the experiments show that the proposed algorithm surpasses
traditional manual annotation methods by generating a higher-
performing model with significantly less annotation effort.

Index Terms—Automated Data Labeling, Active Learning, Semi-
Supervised Learning, Instance Segmentation, Object Detection

I. INTRODUCTION

Machine learning algorithms can be categorized as either
supervised or unsupervised learning, depending on the task
of the object [1] and in the case of supervised learning, the
availability of extensive, high-quality labeled datasets plays
a pivotal role in driving progress especially in the computer
vision research. However, obtaining such extensive labeled
data is challenging due to high costs and labor-intensive
procedures. To mitigate these issues, various approaches have
been developed, including Active Learning [2]-[4], Semi-
Supervised Learning [5]-[7], and Automated Data Labeling
[8]-[10].

Active Learning [11] refers to the use of learning algorithms
that proactively choose which data to learn from, aiming to
maximize the usefulness gained from each labeled instance.
Nevertheless, this method encounters obstacles such as in-
consistent performance, sensitivity to hyperparameters, and
potential difficulties with certain datasets and tasks.

On the other hand, Semi-Supervised Learning [12] makes
use of labeled and unlabeled data, presenting a notable benefit
in scenarios where labeled data is limited. It takes advantage
of the abundance of unlabeled data, thus reducing the reliance
on manual data labeling.

Automated Data Labeling [13] aims to automate the data la-
beling process either fully or partially, significantly decreasing
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the time and cost of manual annotation. An example of such a
system is the Amazon Automated Data Labeling [10], which
simplifies the creation and modification of training datasets.
It underscores the drive to streamline the labeling process in
complex tasks like instance segmentation [14], significantly
impacting the overall effectiveness of computer vision models.

In this study, we integrate diverse strategies, capitalizing on
the significant advancements observed in instance segmenta-
tion models. A cornerstone of the research is the incorporation
of the state-of-the-art YOLOv8 model [15], which is fine-tuned
on niche datasets, particularly focusing on plant leaves afflicted
with diseases. This tailored adaptation of YOLOv8 magnifies
the model’s capacity to discern and identify intricate patterns,
greatly enhancing the efficacy of auto-labeling algorithms. Fur-
ther strengthening our approach, we amalgamate this sophisti-
cated technology with the principles of active learning, embed-
ding it into the Automated Data Labeling (ADL) algorithm.
The fusion of our iterative training algorithm, combined with
the techniques delineated in the preceding paragraphs, yields
a marked increase in the performance of the auto-labeling
process on an expansive scale. This not only emphasizes the
synergy of current technologies but also charts a new trajectory
for future research in semi-supervised learning and computer
vision.

The notable contributions of this study are as follows:

o Utilized a comprehensive dataset of over 20,000 plant
samples for algorithmic training.

o Applied advanced object detection using YOLOVS, en-
hancing segmentation and accelerating training.

o Implemented a classification correction mechanism
alongside an uncertainty data selection algorithm, opti-
mizing model accuracy.

o Introduced semi-supervised learning, leveraging both la-
beled and unlabeled data for better model performance.

o Incorporated active learning to refine auto-labeling and
adjust model weights, ensuring adaptive learning from
new data.

o The auto-labeling system serves dual purposes: data an-
notation and model training, which boosts the accuracy
and resilience of object detection tasks.

Following the introduction, Section 2 discusses related



works on semi-supervised learning, active learning, and the
auto-labeling system, offering an understanding of their impact
on this research. Section 3 outlines the specific materials and
methods employed, including the dataset used for the experi-
ment and a detailed description of the algorithm’s step-by-step
process. The experimental outcomes and the environmental
configuration are presented and analyzed in Section 4. Finally,
Section 5 concludes the paper, summarizing the study and
suggesting areas for future research improvement.

II. RELATED WORKS

This section embarks on a journey through various research
studies and approaches that serve as the foundation for the pro-
posed YOLOv8-ADL model. By understanding the valuable
insights offered by these works, one can better appreciate the
context and rationale behind the design choices in YOLOVS-
ADL. The surveyed literature ranges from deep active learning
techniques and semi-supervised learning to advanced object
detection and weakly-supervised data creation methods.

The comprehensive paper, ”A Comparative Survey of Deep
Active Learning” [3], shapes the foundation of YOLOv8-ADL
with pivotal DAL methods. Pseudo labeling and uncertainty
sampling, central techniques in our model, are further enriched
by “Deep Active Learning for Named Entity Recognition”
[2], despite not adopting its CNN-CNN-LSTM structure. In
YOLOV8-ADL, these pseudo labels, produced from predic-
tions, become interim ground truths, while uncertainty sam-
pling zeroes in on complex cases. Seamlessly integrating with
YOLOVS’s instance segmentation, our model stands at the
confluence of deep and active learning, enhancing performance
and label accuracy. This unique blend elevates the efficiency
of automated labeling, marking a significant leap in machine
learning.

The pivotal studies ”Semi-supervised Active Learning for
Instance Segmentation via Scoring Predictions” [5] and
“Learning from Noisy Large-Scale Datasets with Minimal Su-
pervision” [6] have steered advancements in semi-supervised
learning. [5] introduced a groundbreaking active learning
framework that synergizes initial labeled data with self-labeled
data for refined labeling. Meanwhile, [6] emphasized useful
insights for the semi-supervised learning, even though its core
focus was on noisy annotations that were not concerned in this
research. Building upon these foundations, the YOLOvV8-ADL
algorithm assimilates the robust object detection of YOLOv8
and the spirit of [5]. Unlike [6]’s dual network approach,
YOLOV8-ADL champions a singular advanced model. Its
active learning loop perpetually hones the model and improves
labeled data quality, setting a novel paradigm in processing
expansive datasets.

Snorkel, introduced in [9], facilitates rapid training data
creation via weak supervision. By allowing users to design
labeling functions that generate noisy labels, Snorkel con-
solidates them into probabilistic labels through a generative
model, reducing manual annotation efforts for large datasets.
Conversely, our method taps into semi-supervised learning,

capitalizing on the YOLOVS model and the abundance of unla-
beled data for training. This direct approach, unlike Snorkel’s
reliance on human expertise for multiple labeling functions,
is more straightforward and demands less human intervention.
With the advanced learning capabilities of the YOLOv8 model
and minimal labeled data, our method offers precise results,
promising a balanced solution in terms of human effort,
data utility, and model performance, potentially edging out
frameworks like Snorkel in specific contexts.

In overview, the YOLOv8-ADL model reflects the inte-
gration and adaptation of several existing methodologies in
the fields of active learning, semi-supervised learning, and
advanced object detection. It draws from the strengths of these
methods, while addressing their limitations to optimize the
use of plentiful unlabeled data. The model thus creates a
balanced solution, reducing the human effort required in data
labeling while ensuring satisfactory performance. Ultimately,
the YOLOvVS-ADL contributes a new perspective to the ongo-
ing discussions around automated data labeling and machine
learning.

III. MATERIALS AND METHODS
A. YOLOvS Model Description

The You Only Look Once (YOLO) models [16], [17] revo-
lutionized object detection by unifying location identification
and classification, which were traditionally separate steps. This
approach allows YOLO models to analyze an entire image
during training and prediction in one go. This global view
facilitates the recognition of overall contextual patterns within
the image, enhancing both the accuracy and efficiency of
object detection. The standard architecture of YOLO models
comprises three main parts: the backbone for extracting low-
level features, the neck for multiscale feature fusion, and the
head for final object detection predictions.

Building on this architecture, YOLOvV8 [18] introduces
notable enhancements. It incorporates an advanced loss func-
tion blending Mean Squared Error (MSE) for bounding box
regression and Binary Cross Entropy (BCE) for objectness.
It also adopts a novel neural network architecture that lever-
ages both Feature Pyramid Network (FPN) and Path Ag-
gregation Network (PAN), significantly boosting prediction
accuracy. YOLOVS offers four model sizes catering to various
task requirements and computational resources. In this study,
YOLOvV8s was employed due to its high performance and
computational speed. Moreover, YOLOVS supports rectangular
input shapes and auto-adjusts input size according to the
device, enhancing speed for both training and inference. These
improvements in YOLOVS enhance its efficiency, scalability,
and adaptability, making it an integral part of the YOLOVS-
ADL algorithm for efficient automated data labeling.

B. Dataset Description

The PlantVillage dataset is a publicly accessible collection
of leaf images representing various plant species, each labeled
with specific disease conditions or as healthy. As detailed in
Table I, both PV-Tomato and PV-Apple datasets, derived from
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Fig. 1: An overview of the overall architecture.

Dataset

PV-Tomato dataset

PV-Apple dataset

Manual Annotation

Only initial train and
test

Entire dataset

Number of images

18160 images

3164 images

Proportion of initial
training

25/100 1images per
class (250/1000 im-
ages)

50 images per class
(200 images)

Proportion of Active
Learning

15348 images

2649 images

Proportion of test data

10% of total (1812
images)

10% of total (315 im-
ages)

TABLE I: Plant Vilage Dataset Structure Used for

Experiment

Fig. 2: Instance Segmentation annotations delineated by
precise polygon shapes, highlighting the distinct texture of
the object within the image sample.

the Plant Village [19] dataset, are used in the experiment.
The PV-Apple dataset, manually annotated in its entirety,
serves as a performance benchmark. In contrast, only the
initial training and test subsets of the PV-Tomato dataset are
manually annotated, leaving the rest for the algorithm to label.
Both datasets have been instance segmented using polygons
via the data annotation tool "Roboflow” [20] as represented in
Figure 2. This format of annotation, commonly utilized across
various studies, was employed not only to bolster the final
performance of the model after the training process but also
to enable the creation of a comprehensive auto-labeled dataset
in the format of instance segmentation. This achievement
was made possible due to the inherent instance segmentation
capabilities of the YOLOv8 model.

C. Methodology

The YOLOv8-ADL methodology utilizes an iterative active
learning process. As each cycle of training, prediction, and
labeling unfolds, the model refines its object identification and
labeling capabilities. This process progressively enriches the
labeled dataset and thereby boosts the model’s performance.

1) Active Learning Process and Prediction: The proposed
model of automated data labeling, as illustrated in Fig. 1,
uses an iterative active learning approach. This process begins
by identifying all unlabeled images in the dataset. In each
iteration, a percentage (\) of the unlabeled images, determined
by the user, are selected for labeling, effectively establishing
a heap for each class in the dataset. Within each iteration,
images are processed in batches, with the YOLOvS model,
trained on the available labeled data, predicting labels for these
images. Each image is assigned a confidence score, which is
an indicator of the model’s certainty regarding the assigned



label. These confidence scores play an integral role in the
auto-labeling process as they help determine which images
are selected for labeling in each iteration.

2) Heap Structure, Auto-labeling, and Label Correction:
The algorithm processes images and maintains a heap for each
class, a structure that stores essential details such as the file
name, class, confidence score, and segmentation masks. The
heap size is determined by the A percent calculated earlier. As
predictions are made, any misclassified labels are given top
priority within the heap. For each misclassification, the output
class is corrected by reverting it to the original class saved
prior to the prediction, ensuring the accuracy of the labels.
At the same time, predicted labels with the lowest confidence
scores, which signify a high level of uncertainty, are added
to the heap. These can replace existing entries with higher
confidence scores if the heap reaches its maximum capacity.
Once the prediction phase is completed, all labels within the
heap are used for auto-labeling. This process capitalizes on
the segmentation masks generated based on the robustness of
the YOLOv8 model, producing detailed instance segmentation
with polygons accurately fitting the shape of leaf objects in
the image. The freshly corrected and auto-labeled images are
then merged into the current labeled dataset for future training
iterations, directing the active learning mechanism of the ADL
algorithm towards the most complex instances.

3) Model Retraining, Performance Evaluation, and Stop-
ping Conditions: Following the auto-labeling and correction
process, the labeled images are removed from the unlabeled
data pool, and the model is retrained on the updated labeled
dataset. With each iteration, the quantity and diversity of the
labeled data used for training increase, thereby allowing the
model to continually improve its predictive accuracy. After
each retraining cycle, the model’s performance is evaluated
using a test dataset, providing key performance metrics. These
metrics often reveal an improvement in the model’s perfor-
mance over time due to the growing size and diversity of the
labeled dataset.

The active learning process is repeated until a stopping
condition is met. This could occur when there are no more
unlabeled images, or when the model is no longer capable of
making further progress in detecting the remaining unlabeled
images.The entire process is summarized in the pseudocode
(Algorithm 1) that outlines the proposed YOLOvS8 ADL algo-
rithm.

IV. EXPERIMENTS
A. Environmental Set up

1) Experimental Environment: The study employs the
NVIDIA GeForce RTX 3070 Laptop GPU and YOLOVS
model, refined with select images from Tomato and Apple
datasets. All code is executed in Python via PyCharm, initiat-
ing the algorithm’s active learning cycle for the auto-labeling
process.

2) X Variable Analysis: The impact of varying A values
(10% and 20%) on the performance of the model is examined
using both the Tomato and Apple datasets. The variable A

Algorithm 1 Concise YOLOv8 ADL Algorithm Pseudo Code

Input: Labeled data Dy, unlabeled data Dy, test data Dy,
YOLOv8 model M, ADL parameters, A
Output: Trained model M, metrics, auto-labels for dataset
LOOP Process :
1: for each cycle do
2:  Train M on Dy,
3:  Predict labels for Dy with confidence scores
4:  Define heap size for classes as A percent of unlabeled
images
for each class do
Maintain a min-heap for predictions
Replace heap top for predictions with higher confi-
dence
: end for
9:  Auto-label images from heap using YOLOvVS8 segmen-
tation
10.  Correct misclassified labels
11:  Update Dy and Dy
12:  Assess M on Dp
13: end for
14: return M, metrics, auto-labels

represents the fraction of the unlabeled dataset that gets auto-
labeled and added to the training data at each iteration. By
manipulating A, we observe how different proportions of
additional data per iteration influence the model’s performance
enhancement as the training progresses.

3) Dataset Construction and Analysis: Different training
set sizes (25 and 100 images per class) are used for the Tomato
dataset to assess how the initial size influences the algorithm.
The Apple dataset, initialized with 50 images per class, is used
as a performance benchmark against fully manually annotated
datasets. Balance between the classes of the training dataset
is maintained to avoid model bias and improve generalization
capabilities.

4) Performance Evaluation: The original data is parti-
tioned, with 10% forming the test dataset for performance
evaluations. The performance metric employed is mAP@0.5
scores, widely acknowledged in the field of object detection
for its comprehensive performance appraisal capabilities.

B. Experiment on Semi-Supervising Capability

The adaptability and performance of the YOLOvS ADL
model under different initial conditions and A values was ex-
amined using the PV-Tomato dataset. Initial training conditions
included sets of 25 and 100 images per class and A values
were set at 0.1(10%) and 0.2(20%). The mAP@0.5 scores,
which are reflective of the model’s performance, showed initial
results dependent on the size of the training set. The model
trained with 100 images per class had a slightly higher initial
mAP@0.5 score than the model trained with 25 images per
class, due to the larger amount of labeled data available for
learning.



Initial data 25 per class 100 per class
Dataset A=0.1 A=0.2 A=0.1 A=0.2
Initial 0.6966 | 0.6966 | 0.9165 | 0.9165

iteration 1 0.9176 0.941 0.9359 | 0.9486

iteration 2 0.959 0.9557 | 0.9609 | 0.9574

iteration 3 0.9395 | 0.9631 | 0.9494 | 0.9574

iteration 4 0.9546 | 0.9613 | 0.9574 | 0.9615

iteration 5 0.9457 | 0.9628 | 0.9619 | 0.9639

iteration 6 0.9604 0.9598

iteration 7 0.9622 0.9598

iteration 8 0.9637 0.9598

iteration 9 0.9625 0.9621

iteration 10 | 0.9552 0.9654

TABLE II: mAP@0.5 scores for Tomato(A =0.1),
Tomato(A =0.2) on each initial data type(25/100)

Comparison of mAP50 Scores Across Different Runs(PV-Tomato Dataset)
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Fig. 3: YOLOv8-ADL performance on PV-Tomato

Despite this, as the active learning iterations progressed,
all models showed steady improvement in their mAP@0.5
scores. Remarkably, the model trained with 25 images per
class caught up with the performance of the model trained with
100 images per class, demonstrating the ability of the YOLOv8
ADL algorithm to make effective use of unlabeled data and
improve its performance significantly, even when starting with
a relatively small amount of labeled data. Specifically, the
best performance of the model trained with 25 images per
class, as indicated by the highest mAP@0.5 score, was 0.9637
and 0.9631 for A values of 0.1 and 0.2, respectively. The
model trained with 100 images per class achieved a mAP@0.5
score of 0.9654 for A\=0.1 and 0.9639 for A=0.2. Initially,
variations in the A\ parameter were anticipated to introduce
notable disparities in training progression and accuracy. How-
ever, the derived results suggest that changes in A values did
not impart significant differential impacts, emphasizing the
model’s resilience to such parameter alterations.

These results, encapsulated in Table II and visualized in
Figure 3, underline the robustness and adaptability of the
proposed algorithm in semi-supervised environments. They
underscore the impact of the chosen A\ value on the rate of
improvement and the number of iterations required for the
mAP@0.5 score to converge.

C. Comparison to Human Annotation

The analysis was extended to the Apple dataset, which
allowed for an interesting comparison with manually annotated
labels. This dataset offered a distinct benchmark to evaluate

Dataset Apple(A=0.1) | Apple(A=0.2) | Apple(manual)
initial 0.9083 0.9083

iteration 1 0.9690 0.9709

iteration 2 0.9743 0.9756

iteration 3 0.9751 0.9625

iteration 4 0.9728 0.9750

iteration 5 0.9673 0.9731 0.9649

iteration 6 0.9682

iteration 7 0.9722

iteration 8 0.9624

iteration 9 0.9729

iteration 10 0.9688

TABLE III: mAP@0.5 scores for Apple(A =0.1),
Apple(\ =0.2) and Apple(manual) with fixed initial data(50)

Comparison of mAP50 Scores Across Different Runs(PV-Tomato Dataset)
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Fig. 4: YOLOVS8-ADL and YOLOv8(manual) performance
on PV-Apple

the performance of the YOLOv8 ADL model. In this scenario,
the model began with an initial training set of 50 images
per class, using A values of 0.1 and 0.2, and the mAP@0.5
score was used as a performance metric. The model trained
on the fully labeled dataset provided a solid performance
with an mAP@0.5 score of 0.9649. This score represents the
level of accuracy typically obtained with meticulous human
annotation. However, the YOLOv8 ADL model, starting from
a lower score, demonstrated a significant ability to improve
its performance through active learning. Specifically, the algo-
rithm, when implemented with a A value of 0.1, progressed to
achieve an mAP@0.5 score of 0.9751. An even higher score
of 0.9756 was achieved with a A\ value of 0.2. These results
showcase the capacity of the YOLOv8 ADL model not only
to automate the manual annotation process but also to enhance
the overall performance of the object detection task.

The variation in the optimal A\ value observed across dif-
ferent experiments suggests that this parameter may need
to be adjusted based on the specific characteristics of each
dataset. This is a valuable insight for future applications of
the model, underlining the importance of choosing the right
A value for optimal results. The details of these findings
are presented in Table III and visualized in Figure 4. They
provide compelling evidence of the model’s ability to actively
learn from semi-supervised datasets, integrating auto-labeled
data into the training set over time, and thereby continually
improving its overall performance.



D. Comparison with Other Object Detection Models

The YOLOVS8-ADL model, introduced in this study, is
evaluated against the models tested in [21] which specifically
produced comparable results on tomato dataset from Plant
Village in the recent period. Despite potential differences,
we strived for comparable environmental settings. In this
comparison, YOLOv8-ADL started with an initial set of 100
images per class and a lambda value of 0.1, achieving a mAP
score of 0.9654. This surpassed all models in the reference
study, including the modified Mask R-CNN. Furthermore, the
YOLOV8-ADL model demonstrated efficiencies in time and
labor due to reduced human intervention for data annotation.
The comparison results are summarized in Table IV. The
Apple dataset was excluded because of its lack of study on
the subject.

Model Name mAP on PV-Tomato Dataset
Faster_RCNN 0.625
YOLOvV2 0.704
SSD 0.569
YOLOV3 0.731
Mask RCNN 0.882

YOLOVS-ADL(100 images per

class, A\=0.1) 0.9654

TABLE IV: Comparison of mAP score on PV-Tomato
Dataset for each model

These findings suggest that the YOLOvS-ADL algorithm
may have a potential advantage over the models discussed in
[21] in terms of accuracy, time efficiency, and labor efficiency
for the tomato leaf classification task.

V. CONCLUSION

This study demonstrated the effectiveness of its automated
data labeling method in improving the performance of object
detection models such as YOLOVS. The results showed that by
incorporating a proportion of auto-labeled data into the train-
ing set at each iteration, the model’s performance, as measured
by the mAP@0.5 score, could be significantly enhanced. It
can also be noted that the rate of this improvement and the
number of iterations required are influenced by the A value,
which dictates the proportion of data to be auto-labeled in each
cycle. This implies that the approach could be optimized by
carefully selecting the A value.

The current implementation of the method has proven to be
successful in improving model performance. However, there
is room for further enhancement. One aspect that could be
improved is the mechanism for refining the output labels
produced by the model. The addition of a post-processing
procedure that refines the label coordinates to be more precise
and arranged could potentially boost the model’s performance
even further. This could involve a process that assesses the
shape of the instance segmentation, comparing it against
known characteristics of correctly labeled data to identify and
remove mislabeled instances.

Additionally, future research could explore the application
of this method in other domains beyond object detection,

assessing its versatility and effectiveness in different contexts.
Furthermore, more advanced techniques could be explored
to optimize the selection of the A\ value, potentially through
adaptive methods that adjust the A value based on the progress
of the model’s learning.

To summarize, this method presents a promising opportunity
to improve the performance of deep learning models, minimize
the manual labor involved in data labeling, and potentially
facilitate more precise and efficient object detection. Future
work will focus on refining the approach and exploring its
broader applicability.
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