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Abstract—Image segmentation in computer vision, especially in
tasks related to object detection, remains a significant challenge
in achieving both accuracy and efficiency. This article introduces
an automated segmentation algorithm that employs a synergistic
approach, combining active learning techniques with YOLOvVS8
across various datasets and conditions. Additionally, this method
is applied to OneFormer-a vision transformer model-to experi-
ment with its validation across wider domains. The objective of
this study is to automate the image segmentation process and
enhance the performance of the object detection model. The
proposed YOLOv8 Automated Image Segmentation (YOLOVS-
AIS) algorithm operates by leveraging an active learning mecha-
nism where it automatically labels a portion of the unlabeled
data based on uncertainty scores, then integrating this data
into the training dataset for the iterative training process. This
approach aims to reduce the need for manual annotation, which is
inefficient due to the reliance on manual effort. The effectiveness
of the method was evaluated using three datasets: the tomato
and apple leaf datasets from the Plant Village collection, and the
HAM10000 skin lesion dataset, under various conditions.

Index Terms—Automated Data Segmentation, Active Learning,
Semi-Supervised Learning, Instance Segmentation, Object Detec-
tion

I. INTRODUCTION

Machine learning algorithms can be categorized as either
supervised or unsupervised learning, depending on the task
of the object [1]. In the case of supervised learning, the
availability of extensive, high-quality labeled datasets plays
a pivotal role in determining the performance of models.
However, obtaining such extensive labeled data is challenging
because manual annotation is a expensive and labor-intensive
procedure. To mitigate these issues, various approaches have
been developed, including Active Learning [2]-[4], Semi-
Supervised Learning [5]-[7], and Automated Data Labeling
[81-10].

Active Learning [11] refers to the use of learning algorithms
that proactively choose which data to learn from to maximize
the usefulness gained from each labeled instance. However,
this method encounters obstacles such as inconsistent perfor-
mance, sensitivity to hyperparameters, and potential difficul-
ties with certain datasets and tasks.
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On the other hand, Semi-Supervised Learning [12] presents
a notable benefit in scenarios where labeled data is limited by
utilizing both labeled and unlabeled data. It takes advantage
of the abundance of unlabeled data, thus reducing the reliance
on manual image segmentation.

Automated Data Labeling [13] aims to either fully or par-
tially automate the image segmentation process to significantly
reduce the time needed for manual annotation. An example
of such a system is the Amazon Automated Data Labeling
[10], which simplifies the creation and modification of training
datasets. It underscores the drive to streamline the segmenta-
tion process in complex tasks like instance segmentation [14],
significantly increasing the overall effectiveness of computer
vision models.

The objective of this study is to incorporate the state-of-the-
art YOLOv8 model [15] with an automated image segmenta-
tion algorithm, and to apply it to various datasets such as the
plant leaves diseases dataset of PlantVillage and the skin lesion
dataset from HAMI10000 patients. Additionally, we applied
a vision transformer model, OneFormer [16], to compare
the performance of our algorithm on a different computer
vision architecture. This tailored adaptation of the YOLOvS8
model magnifies its capacity to discern and identify intricate
patterns, greatly enhancing the efficacy of auto-segmentation
algorithms.

To further strengthen our approach, we have synthesized
various aspects of computer vision techniques into a single
framework, resulting in the embedding of the Automated
Image Segmentation (AIS) algorithm. Our iterative training
algorithm yields a significant increase in the performance of
the auto-segmentation process. This not only underscores the
synergy of current technologies but also charts an interesting
trajectory for future research in semi-supervised learning and
computer vision.

The notable contributions of this study are as follows:

o Utilized a comprehensive dataset of over 20,000 plant

samples for algorithmic training.

o Applied advanced object detection using YOLOVS, en-

hancing segmentation and accelerating training.



o Implemented a classification correction mechanism
alongside an uncertainty data selection algorithm, opti-
mizing model accuracy.

o Introduced semi-supervised learning, leveraging both la-
beled and unlabeled data for better model performance.

« Incorporated active learning to refine auto-segmentation
and adjust model weights, ensuring adaptive learning
from new data.

« The auto-segmentation system serves dual purposes: data
annotation and model training, which boosts the accuracy
and resilience of object detection tasks.

o Additional HAM10000 skin lesion dataset was used to
test the validation of its performance across different
datasets that present more challenging features for seg-
mentation and are more severely skewed in class distri-
bution.

o Evaluated the system’s performance by exploring its ca-
pacity to utilize the minimum labeled dataset for its tasks
and identified its limitations. Additionally, we proposed
a new method to mitigate these problems.

« In addition to the YOLOVS8 model, we also experimented
the performance of a vision transformer model within our
system.

The chapter is divided into 5 sections. Following the in-
troduction section, Section 2 discusses related works on semi-
supervised learning, active learning, and the auto-segmentation
system, offering an understanding of their impact on this
research. Section 3 outlines the specific materials and methods
employed, including the dataset used for the experiment and
a detailed description of the algorithm’s step-by-step process.
The experimental outcomes and the environmental configura-
tion are presented and analyzed in Section 4. Finally, Section 5
concludes the chapter, summarizing the study and suggesting
areas for future research improvement.

II. RELATED WORKS

This section embarks on a journey through various research
studies and approaches that serve as the foundation for the
proposed YOLOVS-AIS model. By understanding the valuable
insights offered by these works, one can better appreciate the
context and rationale behind the design choices in YOLOVS-
AIS. The surveyed literature ranges from deep active learning
techniques and semi-supervised learning to advanced object
detection and weakly-supervised data creation methods.

The comprehensive research, ”A Comparative Survey of
Deep Active Learning” [3], shapes the foundation of this
research with pivotal DAL methods. Pseudo segmentation
and uncertainty sampling, central techniques in our model,
are further enriched by “Deep Active Learning for Named
Entity Recognition” [2], despite not adopting its CNN-CNN-
LSTM structure. In YOLOvVS-AIS, these pseudo labels, pro-
duced from predictions, become interim ground truths, while
uncertainty sampling zeroes in on complex cases. Seamlessly
integrating with YOLOV8’s instance segmentation, our model
stands at the confluence of deep and active learning, enhancing
performance and label accuracy. This unique blend elevates the

efficiency of automated segmentation, marking a significant
leap in machine learning.

The pivotal studies ”Semi-supervised Active Learning for
Instance Segmentation via Scoring Predictions” [5] and
”Learning from Noisy Large-Scale Datasets with Minimal Su-
pervision” [6] have steered advancements in semi-supervised
learning. [5] introduced a groundbreaking active learning
framework that synergizes initial labeled data with self-labeled
data for refined segmentation. Meanwhile, [6] emphasized
useful insights for the semi-supervised learning, even though
its core focus was on noisy annotations that were not con-
cerned in this research. Building upon these foundations, the
YOLOVS8-AIS algorithm assimilates the robust object detection
of YOLOv8 and the spirit of [5]. Unlike [6]’s dual net-
work approach, YOLOvVS-AIS champions a singular advanced
model. Its active learning loop perpetually hones the model
and improves labeled data quality, setting a novel paradigm in
processing expansive datasets.

Snorkel, introduced in [9], facilitates rapid training data
creation via weak supervision. By allowing users to design
segmentation functions that generate noisy labels, Snorkel
consolidates them into probabilistic labels through a gen-
erative model, reducing manual annotation efforts for large
datasets. Conversely, our method taps into semi-supervised
learning, capitalizing on the YOLOv8 model and the abun-
dance of unlabeled data for training. This direct approach,
unlike Snorkel’s reliance on human expertise for multiple
segmentation functions, is more straightforward and demands
less human intervention.

OneFormer [16], experimented alongside the YOLOvV8 ob-
ject detection model in this research, introduces a novel
approach to universal image segmentation. It employs a single
transformer model that achieves state-of-the-art performance
across semantic, instance, and panoptic segmentation tasks
through a single training process. The framework’s task-
conditioned joint training strategy incorporates a task token,
dynamically adjusting to the specific segmentation task at
hand. Additionally, it utilizes a query-text contrastive loss to
improve task and class distinction. This innovative design sig-
nificantly reduces resource requirements, making high-quality
segmentation more accessible and efficient.

In overview, this research reflects the integration and adap-
tation of several existing methodologies in the fields of active
learning, semi-supervised learning, and advanced object de-
tection models with instance segmentation. It draws from the
strengths of these methods, while addressing their limitations
to optimize the use of plentiful unlabeled data. The model thus
aims to create a balanced solution, reducing the human effort
required in image segmentation while acquiring satisfactory
performance. Ultimately, it contributes a new perspective to
the ongoing discussions around automated image segmentation
and machine learning.



III. MATERIALS AND METHODS
A. YOLOvVS

The You Only Look Once (YOLO) models [17], [18] revo-
lutionized object detection by unifying location identification
and classification, both of which were traditionally separated
from each other. This approach allows YOLO models to
analyze an entire image during training and prediction in
one go. This global view facilitates the recognition of overall
contextual patterns within the image, enhancing both the
accuracy of object detection and classification.

YOLOVS8 [19] incorporates an advanced loss function blend-
ing Mean Squared Error (MSE) for bounding box regres-
sion and Binary Cross-Entropy (BCE) for objectness. It also
adopts a novel neural network architecture that leverages
both Feature Pyramid Network (FPN) and Path Aggregation
Network (PAN) to significantly boost predictive accuracy.
These improvements in YOLOvVS enhance its scalability and
adaptability, making it an integral part of the YOLOv8-AIS
algorithm for efficient automated image segmentation.

B. OneFormer

Vision transformers have recently gained prominence for
their effectiveness across various vision tasks. Following this
trend, we also tested our proposed algorithm using a vision
transformer model built on a framework called the OneFormer.
Originated from the success of transformers in natural lan-
guage processing, vision transformers adapt their architecture
for visual data to process images as sequences of patches.
OneFormer builds on this foundation by introducing significant
advancements such as a unified framework for addressing mul-
tiple segmentation tasks (semantic, instance, panoptic) simul-
taneously with a single model. Compared to the Mask2Former
framework, it offers improved performance in task adaptability
and segmentation precision through innovations include task-
conditioned training and query-text contrastive loss [20].

C. Dataset Description

Dataset

PV-Tomato dataset

PV-Apple dataset

Manual Annotation

Only initial train and
test

Entire dataset

Number of images

18160 images

3164 images

Proportion of initial
training

25/100 images per
class (250/1000 im-
ages)

50 images per class
(200 images)

Proportion of Active
Learning

15348 images

2649 images

Proportion of test data

10% of total (1812
images)

10% of total (315 im-
ages)

TABLE I: PlantVillage Dataset Structure Used for

Experiment

The PlantVillage dataset is a publicly accessible collection
of leaf images representing various plant species, with each
image labeled with specific disease conditions or as healthy.
As detailed in Table I, both PlantVillage Tomato (PV-Tomato)
and PlantVillage Apple (PV-Apple) datasets, derived from
the Plant Village [21] dataset, are used in the experiment.

Classes Number of Images
Actinic keratoses 327

Basal cell carcinoma 514

Benign keratosis-like lesions | 1099
Dermatofibroma 115

Melanoma 1113

Melanocytic nevi 6705

TOTAL 9758

TABLE II: Utilized Image Data Distribution for each class
from HAM10000 Dataset

Fig. 1: Instance Segmentation annotations precise polygon
shapes, highlighting the distinct texture of the object

The PV-Apple dataset, manually annotated in its entirety,
serves as a performance benchmark. In contrast, only the
initial training and test subsets of the PV-Tomato dataset are
manually annotated, leaving the rest for the algorithm to label.
Both datasets have been instance segmented using polygons
via the data annotation tool "Roboflow” [22] as represented
in Fig 1. This format of annotation, commonly utilized across
various studies, was employed to bolster the final performance
of the model after the training process and enable the creation
of a comprehensive auto-labeled dataset in the format of
instance segmentation. This achievement was made possible
because of the inherent instance segmentation capabilities of
the YOLOVS model.

The HAMI10000 dataset research presents an extensive
collection of dermatoscopic images designed to enhance the
automated diagnosis of pigmented skin lesions through ma-
chine learning. It contains over 10,000 images from varied
sources, carefully curated to encompass a broad spectrum of
pigmented lesions. As shown in Table II, the dataset includes
an imbalanced distribution across different classes. Unlike
the PlantVillage dataset, which required manual annotation,
the HAM10000 dataset comes with pre-existing segmentation
masks, facilitating easier conversion for experimental use. This
feature, coupled with its varied nature compared to baseline
datasets like PV-Tomato and PV-Apple, offers a comprehen-
sive view of the system’s effectiveness across different dataset
types and data distribution scenarios, highlighting its utility in
diversifying research approaches.

D. Methodology

The YOLOVS-AIS methodology utilizes an iterative active
learning process. In each cycle of training, prediction, and
segmentation, the model refines its object identification and
segmentation capabilities. This process progressively enriches



the labeled dataset and thereby boosts the model’s perfor-
mance.

Algorithm 1 Confidence score based YOLOVS-AIS Algorithm
Pseudo Code
Input: Labeled data Dy, unlabeled data Dy, test data Dr,
YOLOVS model M, AIS parameters, A
Output: Trained model M, metrics, auto-labels for dataset
LOOP Process :
1: for each cycle do
2:  Train M on Dy,
3:  Predict labels for Dy with confidence scores
4:  Define heap size for classes as A percent of unlabeled
images
5. for each class do
: Maintain a min-heap for predictions
7: Replace heap top for predictions with higher confi-
dence
end for
Auto-label images from heap using YOLOvVS8 segmen-
tation
10:  Correct misclassified labels then update Dy, and Dy
11:  Assess M on Drp
12: end for
13: return M, metrics, auto-labels

1) Active Learning Process and Prediction: As illustrated
in Figure 2 and detailed in Algorithm 1, the proposed model
for automated image segmentation employs an iterative active
learning approach. The initial model is trained on manually
segmented data, then performs inference on all unlabeled
images in the dataset to calculate their confidence scores.
During each inference, images are processed in batches, with
the YOLOvS model, trained on the available labeled data,
predicting labels for these images. Each image is assigned with
a confidence score, which serves as an indicator of the model’s
certainty regarding the assigned label. These confidence scores
play a crucial role in the auto-segmentation process as they
help determine which images are selected for segmentation in
each iteration. Based on the confidence scores, the algorithm
then selects a (\) percentage of the inference results with
the highest uncertainty scores. This (\) variable is used to
establish the size of the heap for each class in the dataset.
The results with the highest uncertainty scores are then added
to the training and validation splits of the dataset, completing
one iteration of the training process.

2) Heap Structure, Auto-segmentation, and Label Correc-
tion: The algorithm processes images and maintains a heap-
a structure that stores inference results such as confidence
scores with predicted classes and the actual class information-
for each class. The heap size is determined by the A percent
calculated earlier. As predictions are being made, predicted
labels with the lowest confidence scores, which signify a
high level of uncertainty, are added to the heap. These labels
can replace existing entries with higher confidence scores if
the heap reaches its maximum capacity. Once the prediction

phase is completed, all labels within the heap are used for
auto-segmentation. For each misclassification of the class
information of the selected segmentation labels, the output
class is corrected by reverting it to the original class according
to its saved actual class information, ensuring the accuracy of
the labels. Next, the freshly corrected and auto-labeled images
are then merged into the current labeled dataset for future
training iterations, directing the active learning mechanism of
the AIS algorithm towards the most complex instances.

3) Model Retraining, Performance Evaluation, and Stop-
ping Conditions: Following the auto-segmentation and cor-
rection process, the labeled images are removed from the
unlabeled data pool. The model is then retrained on the
updated labeled dataset. With each iteration, the quantity and
diversity of the labeled data used for training increase, thereby
allowing the model to continually improve its predictive ac-
curacy. After each retraining cycle, the model’s performance
is evaluated using a test dataset, providing key performance
metrics. These metrics often reveal an improvement in the
model’s performance over time due to the growing size and
diversity of the labeled dataset. The segmentation and learning
process is repeated until a stopping condition is met. This
could occur when there are no more unlabeled images, or when
the model is no longer capable of making further progress in
detecting the remaining unlabeled images.

4) Simple Data Duplication Method: The Simple Data
Duplication method involves duplicating the images from the
given initial dataset. Since augmentation occurs automati-
cally within the YOLOWVS training process, this method could
help the model better learn the common shapes within the
dataset from an enlarged initial dataset. Consequently, this
can enhance the model’s performance in subsequent training
iterations. This method is applied to the dataset under specific
conditions: 1) when the collapse of model performance is
expected because of the initial size of the dataset being too
small, or 2) when the data from the dataset itself has unclear
and vague shapes or features, requiring the model to learn
from a more numerous initial dataset.

E. OneFormer model application

After a series of experiments with YOLOVS-AIS, we ap-
plied our algorithm to the OneFormer vision transformer
model to experiment with the performance of transformer
models on this task. The key question is whether it can
adapt to the initial dataset enough to capture the common
shapes and features. This adaptation would allow it to utilize
the learned weights for the next iteration of the training
process, making successful inferences to integrate them into
the existing training dataset, as we did with the YOLOvS8
version. The OneFormer model is fundamentally different
from the YOLOv8 model and originates from a different
framework. Consequently, the iterative training process must
be explicitly implemented in a manner distinct from that
used with YOLOVS, albeit to perform a similar function.
The dataset, initially in the instance segmentation annotation
format of YOLOVS8 (text files), must be converted into the
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Fig. 2: An overview of the overall architecture.

semantic segmentation mask format to be utilized by the
OneFormer model. Once trained on these image and mask
pairs, the model is then used to infer mask annotations for
a A\ proportion of unannotated data, which are subsequently
combined into the existing training dataset.

IV. EXPERIMENTS
A. Environmental Set up

1) Experimental Environment: This study utilized the
NVIDIA GeForce RTX 3070 Laptop GPU for the YOLOvVS8
model. For the OneFormer vision transformer model, it
employed online graphic card-equipped environments from
VAST.AI because of the significant computational resources
required by transformer models. The research focuses on
refined and selected Apple and Tomato leaf image data from
the Plant Village dataset, alongside the HAM10000 skin lesion
dataset. All data preprocessing and the implementation of
YOLOVS8-AIS were carried out in Python using PyCharm, fa-
cilitating the initiation of the algorithm’s active learning cycle
for the auto-segmentation process. Conversely, for the AIS
implementation of the OneFormer model, a Jupyter notebook
was utilized to run the processes server-side on VAST.AI The
server had 48GB of disk space for storing data and model
run information and 2 NVIDIA RTX 4090 graphics cards to
utilize PyTorch-based machine learning environments.

2) Dataset Construction: Each of the PV-Tomato, PV-
Apple, and HAM10000 datasets shares the following settings:
10% of the dataset was separated as test split at the start,
then it was assigned its own chosen initial dataset size that
they initially train on, and the remaining data works as the
active learning part which does not have any segmentation
information but only have classified information.

3) Class-Wise Initial Dataset Sizes and Their Purposes:
Different training set sizes (25 and 100 images per class)
were used for the Tomato dataset to assess how the initial size
influences the algorithm’s performance. The PV-Apple dataset,
initialized with 50 images per class, served as a performance
benchmark against fully manually annotated datasets. A bal-
ance between the classes in the training dataset was maintained
to avoid model bias and enhance generalization capabilities.
For the HAM10000 dataset, 60 images per class were used
to investigate how the model performs on datasets with more
vague features and shapes, as well as significantly imbalanced
data distribution compared to the Tomato and Apple datasets.

4) X\ Variable Analysis: The impact of varying A values
(10% and 20%) on the performance of the model was ex-
amined using both the PV-Tomato and PV-Apple baseline
datasets. The variable \ represents the fraction of the unlabeled
dataset that is auto-labeled and added to the training data at
each iteration. By manipulating A, we could observe how dif-
ferent proportions of additional data per iteration influence the
model’s performance enhancement as the training progresses.

For the experiments with minimal initial dataset sizes using
the HAMI10000 dataset, the A\ values were fixed at 30%.
This decision was based on observations that variations in
the A values do not sufficiently impact the training process
to make a meaningful difference in the baseline test cases,
where the model was tested on the baseline PV-Tomato and
PV-Apple datasets without modifications. Therefore, we chose
to maintain A at a common maximum threshold of new
labeled data that the model can incorporate per iteration of
training, rather than observing variations of them in these later
experiments.



5) Evaluating Performance with Minimal Initial Dataset
Sizes Under Varied Conditions: In the second stage of the
experiments, which tests the critical threshold of the initial
data amount that can compromise the performance of the
model’s iterative training system, the initial data size for each
class was reduced to 20 for both the PV-Tomato and PV-
Apple datasets. The PV-Apple dataset was subjected to more
detailed and varied conditions in addition to the minimal initial
dataset size condition, including cases where specific classes’
image data were entirely missing. This included conditions
with only the minimal size initial dataset (ALL), missing half
of the classes that showed the lowest accuracy (TOP2), and
missing every class except the one which showed the highest
accuracy (TOP1), to evaluate whether the model can overcome
this missing data utilizing the misclassification correction
algorithm.

The PV-Tomato dataset experiment focused on how the
dataset could be augmented with the Simple Data Duplication
method to mitigate the decrease in model’s performance when
the minimal initial dataset size crosses the critical threshold,
which prevents the model from learning adequately from its
initial size and thereby affects the training process outcomes
negatively. There were two cases for the PV-Tomato dataset:
one with only the minimal initial dataset size of 20 images
per class (ALL) and another with the Simple Data Duplication
method applied (ALL_DUPLICATED).

6) Evaluating Model Performance on a New and Ambigu-
ously Shaped Dataset: To explore whether the Simple Data
Duplication method could also enhance the model’s predictive
accuracy when the dataset itself presents critical challenges
that could drastically reduce performance, the HAM10000
dataset was subjected to this mitigation approach because of
its imbalanced distribution of classes and vague shapes and
features.

7) OneFormer settings: Because of its significant compu-
tational resource requirements, the OneFormer model version
was experimented with solely on the PV-Apple dataset to con-
duct the experiment efficiently. This choice was also influenced
by the verified performance of the PV-Apple dataset on the
YOLOVS8-AIS architecture under various conditions. The A
is fixed at 30% for the OneFormer application version. The
training dataset was shared with the minimal size PV-Apple
dataset testcase of the YOLOVS-AIS model but converted into
the semantic segmentation mask format. The first experiment
was conducted with 10 epochs without changing the minimal
size PV-Apple dataset. The second experiment used the same
dataset, but with a Simple Data Duplication method applied to
triple its size. This was done to assist the OneFormer model
in better capturing the shapes from the initial dataset because
of its unpredictable performance results at first glance. Unlike
YOLOVS, OneFormer does not use a validation split of the
training dataset. Therefore, it started with an initial dataset
consisting only of the training split and continuously adds
newly segmented data into the training split.

8) Performance Evaluation: The performance metric em-
ployed is the mAP@0.5 score, which is widely acknowledged

in the fields of object detection and instance segmentation
because of its comprehensive performance evaluation capabil-
ities. The score is measured for the models that were trained
on every iteration of the training process, based on the test
split of the dataset from the start.

B. Experiment on Semi-Supervising Capability

Initial data 25 per class 100 per class
Dataset A=0.1 A=0.2 A=0.1 A=0.2
Initial 0.6966 | 0.6966 | 0.9165 | 0.9165

iteration 1 0.9176 0.941 0.9359 | 0.9486

iteration 2 0.959 0.9557 | 0.9609 | 0.9574

iteration 3 0.9395 | 0.9631 | 0.9494 | 0.9574

iteration 4 0.9546 | 0.9613 | 0.9574 | 0.9615

iteration 5 0.9457 | 0.9628 | 0.9619 | 0.9639

iteration 6 0.9604 0.9598

iteration 7 0.9622 0.9598

iteration 8 0.9637 0.9598

iteration 9 0.9625 0.9621

iteration 10 | 0.9552 0.9654

TABLE III: mAP@0.5 scores for Tomato(A =0.1),
Tomato(A =0.2) on each initial data type(25/100)

Comparison of mAP50 Scores Across Different Runs(PV-Tomato Dataset)
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Fig. 3: YOLOvV8-AIS performance on PV-Tomato

The adaptability and performance of the YOLOv8 AIS
model under different initial conditions and A\ values were
examined using the PV-Tomato dataset. Initial training condi-
tions included sets of 25 and 100 images per class and A values
at 0.1(10%) and 0.2(20%). The mAP@0.5 scores, which are
reflective of the model’s performance, showed initial results
dependent on the size of the training set. The model trained
with 100 images per class had a higher initial mAP@0.5 score
than the model trained with 25 images per class because of
the larger amount of labeled data available for learning.

As the active learning iterations progressed, all models
showed steady improvement in their mAP@0.5 scores. Re-
markably, the model trained with 25 images per class caught
up with the performance of the model trained with 100
images per class, demonstrating the ability of the YOLOvVS8
AIS algorithm to make effective use of unlabeled data and
improve its performance significantly, even when starting with
a relatively small amount of labeled data. Specifically, the best
performance of the model trained with 25 images per class,
as indicated by the highest mAP@0.5 score, was 0.9637 and
0.9631 for A values of 0.1 and 0.2, respectively. The model



trained with 100 images per class achieved a mAP@0.5 score
of 0.9654 for A=0.1 and 0.9639 for A=0.2. Initially, variations
in the A\ parameter were anticipated to introduce notable
disparities in training progression and accuracy. However,
the derived results suggest that changes in A values had
no significant differential impacts, emphasizing the model’s
resilience to such parameter alterations.

These results, encapsulated in Table III and visualized in
Figure 3, underline the robustness and adaptability of the
proposed algorithm in semi-supervised environments. They
underscore the impact of the chosen A value on the rate of
improvement and the number of iterations required for the
mAP@0.5 score to converge.

C. Comparison to Human Annotation

Dataset Apple(A=0.1) | Apple(A=0.2) | Apple(manual)
initial 0.9083 0.9083

iteration [ 0.9690 0.9709

iteration 2 0.9743 0.9756

iteration 3 0.9751 0.9625

iteration 4 0.9728 0.9750

iteration 5 0.9673 0.9731 0.9649

iteration 6 0.9682

iteration 7 0.9722

iteration 8 0.9624

iteration 9 0.9729

iteration 10 0.9688

TABLE IV: mAP@0.5 scores for Apple(A =0.1),
Apple(\ =0.2) and Apple(manual) with fixed initial data(50)

Comparison of mAP50 Scores Across Different Runs(PV-Tomato Dataset)
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Fig. 4: YOLOV8-AIS and YOLOv8(manual) performance on
PV-Apple

The analysis was extended to the PV-Apple dataset, which
allowed for an interesting comparison with manually annotated
labels. This dataset offered a distinct benchmark to evaluate
the performance of the YOLOv8 AIS model. In this scenario,
the model began with an initial training set of 50 images
per class, using A values of 0.1 and 0.2, and the mAP@0.5
score was used as a performance metric. The model trained
on the fully labeled dataset provided a solid performance
with an mAP@0.5 score of 0.9649. This score represents the
level of accuracy typically obtained with meticulous human
annotation. However, the YOLOv8 AIS model, starting from
a lower score, demonstrated a significant ability to improve

its performance through active learning. Specifically, the algo-
rithm, when implemented with a A value of 0.1, progressed to
achieve an mAP@0.5 score of 0.9751. An even higher score
of 0.9756 was achieved with a A\ value of 0.2. These results
showcase the capacity of the YOLOv8 AIS model to not only
automate the manual annotation process but also to enhance
the overall performance of the object detection task.

The variation in the size of the initial dataset once again
demonstrated its influence at the beginning of the training
process, whereas changes in the A\ value did not significantly
affect the system’s performance. The specifics of these obser-
vations are detailed in Table IV and illustrated in Figure 4.
These findings compellingly underscore the model’s capacity
to effectively learn from semi-supervised datasets by incorpo-
rating auto-labeled data into the training set over time, thus
consistently enhancing its overall performance. This insight
into the effects of the parameters, coupled with the system’s
successful performance on the PV-Apple dataset, provides a
clear direction for the next phase of research: investigating
whether the system can maintain its efficacy in scenarios
characterized by even smaller datasets, imbalanced datasets,
and datasets with more complex features and textures.

D. Experiments on Minimal Dataset Sizes and Dataset Imbal-
ance

Loop ALL TOP1 TOP2
Loopl 0.1917 | 0.1930 | 0.1886
Loop2 | 0.8847 | 0.7779 | 0.8896
Loop3 | 0.9777 | 0.9830 | 0.9749
Loop4 | 0.9936 | 0.9925 | 0.9910
TABLE V: mAP@0.5 scores for ALL, TOP1, and TOP2 test
cases.
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Fig. 5: YOLOvV8-AIS on PV-Apple minimal and imbalanced
version

Building on our previous research [23], this study tested
the system’s adaptability to datasets with minimal initial data
or imbalances due to missing class instances. Initially, the
PV-Apple dataset had 50 images per class, reduced to 20
images per class for the initial training phase. This reduced
dataset led to a significant initial performance decrease, but



models trained on iteratively labeled datasets showed remark-
able improvements (Table V, Figure 5 as ’apple-all’ (ALL)).
This indicates the YOLOv8 model’s effectiveness in leveraging
minimal datasets when the data is clear and distinct.

We also tested the impact of intentionally imbalanced
datasets by excluding classes with the lowest mAP @50 scores.
Two scenarios were tested: one with half the classes re-
moved (TOP2) and another with only the top-performing
class retained (TOP1). Both scenarios initially showed low
performance but rapidly improved with training iterations. This
suggests the model can learn features from missing class data
if the dataset’s classes share similar features, aided by our
correction algorithm. The outcomes are detailed in Table V
and Figure 5.

Remarkably, the model trained on the minimal dataset
outperformed the model trained on the larger dataset, which
had mAP@50 scores of 0.9688 and 0.9731 for lambda values
0.1 and 0.2, respectively. With the lambda value fixed at 30%
and using the minimal dataset, the model achieved scores of
0.9936 (ALL), 0.9925 (TOP1), and 0.9910 (TOP2), showing
nearly a 2% overall performance improvement.

E. Mitigating Performance Collapse Beyond Critical Thresh-
olds through Data Duplication

Loop ALL ALL_DUPLICATED
Loopl | 0.1471 0.2871

Loop2 | 0.8004 0.6114

Loop3 | 0.8239 0.8977

Loop4 | 0.9080 0.9466

Loop5 | 0.8970 0.9651

Loop6 | 0.9132 0.9654

Loop7 | 0.9340 0.9667

Loop8 | 0.9145 N/A

TABLE VI: mAP@0Q.5 scores for ALL and
ALL_DUPLICATED test cases in the tomato version.
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Fig. 6: YOLOvV8-AIS on PV-Apple minimal and imbalanced
version

Following the successful adaptation to minimal and im-
balanced datasets, we also investigated scenarios where the
system failed to accurately segment common shapes within the
dataset from the initial data. Consequently, it could not achieve

significant improvements in subsequent training iterations.
This issue was encountered during experiments with the PV-
Tomato dataset, where the number of images per class was
reduced from 25/100 to 20. Performance improvements were
observed across iterations, but due to the model’s inability
to accurately segment shapes based on the initial dataset,
the final results remained unsatisfactory compared to previous
experiments.

In response to the challenges encountered with the minimal
and imbalanced dataset scenarios, we utilized the Simple
Data Duplication method to duplicate the initial dataset. This
approach, which does not involve adding new segmented data,
allows the duplicated data to provide sufficient information
for the model to learn the common shapes and features across
classes. Models trained on datasets augmented by this dupli-
cation method did not reach the performance levels observed
in previous tests conducted with the PV-Tomato dataset. How-
ever, their performance still improved significantly compared
to the baseline established with the original minimal dataset
(ALL_DUPLICATED). These performance improvements are
detailed in Table VI and illustrated in Figure 6.

While the ALL case utilizing the raw minimal dataset
obtained an mAP@50 score of 0.9145, which is nearly a 5%
decrease from the original best performance of 0.9637 for the
lambda value 0.1 and 0.9631 for the lambda value 0.2 in the
original PV-Tomato experiment with 25 images per class, and
0.9654 for the lambda value 0.1 and 0.9639 for the lambda
value 0.2 with 100 images per class, the ALL_DUPLICATED
case achieved a performance level nearly similar to the original
experiments, obtaining an mAP@50 score of 0.9667.

Loop First Set | Second Set
Loopl 0.1878 0.2083
Loop2 0.1859 0.2912
Loop3 0.2697 0.3235
Loop4 0.2866 0.3424
Loop5 0.2651 0.3473
Loop6 0.2730 0.3432
Loop7 0.2851 0.3570
Loop8 0.2777 0.3695
Loop9 0.2829 0.3167

TABLE VII: Iteration performance comparison for two sets
of the HAM10000 dataset version.

Class mAP50
All 0.317
Actinic keratoses 0.138
Basal cell carcinoma 0.157
Benign keratosis-like lesions 0.272
Dermatofibroma 0.098
Melanoma 0.31
Melanocytic nevi 0.925

TABLE VIII: mAP@0.5 scores by class.

This method encounters limitations when the shapes of
objects vary significantly among classes or are ambiguous,
compared to other datasets with specific and clear shapes.
Therefore, the inherent characteristics of the dataset itself
are not well-suited for iterative training based on a small
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Fig. 7: YOLOV8-AIS on PV-Apple minimal and imbalanced
version

initial dataset proportion. These limitations were revealed
when YOLOVS-AIS was tested on the HAM10000 dataset.
This dataset contains classes with varying and ambiguous
segmentation processes, alongside a natural data distribution
imbalance among the classes. This led to varied performance
in the YOLOvVS8-AIS model. While the model excelled in
classes with high data distribution and clear shapes and
features, it performed poorly in classes with low data distribu-
tion and ambiguous shapes and features, which are difficult
to capture from the small initial dataset. These disparities
resulted in catastrophic performance across all classes, yield-
ing poor average results. The performance gap between the
classes can be reviewed in Table VIII. Unfortunately, this
poor performance could not be significantly improved even
through the data duplication method. The iterative training
processes’ results for both test cases—one for the baseline
(ALL) and another for the version with the duplicated method
(ALL_DUPLICATED)—are detailed in Table VII, and their
visualizations as graphs are illustrated in Figure 7.

F. Experiments on the application of the system on the One-
Former model

While the YOLOVS-AIS has demonstrated impressive per-
formance across various conditions and datasets, it had not
been previously tested whether our AIS algorithm could
extend beyond YOLOVS instance segmentation models. The
OneFormer application of the model was experimented with
in two test cases, as introduced in the OneFormer settings
section. However, the results presented in Figure 8 have
shown that the transformer-based model is not as versatile
as YOLOVS in environments where it must make accurate
predictions based on a very limited proportion of the entire
dataset. This limitation resulted in the segmentation performed
in later iterations failing to capture the basic features and
shapes of objects in the images in both test cases.

Fig. 8: Inference Sample Analysis for the Oneformer Model:
Showcased from left to right are the original image (left), the
ground truth segmentation mask (middle), and the model’s
predictive output (right))

Model Total Inference Time (seconds)
OneFormer 17.0774
YOLOvV8 7.0720

TABLE IX: Inference times of OneFormer and YOLOVS
models on 100 sample images.

The failure of the OneFormer model on the PV-Apple
dataset starkly contrasts with the performance of the YOLOVS-
AIS model, which excelled under various conditions of the
PV-Apple dataset, even with a minimal initial dataset size,
similar epoch numbers, and, most importantly, significantly
lower computational resource requirements for short inference
times. The difference in inference time is illustrated in Table
IX, highlighting that the gap in inference time between the
two models widens as the sample image size increases and
suggesting that the actual difference in inference times could
be even larger. This underscores the limitations in data ef-
ficiency of vision transformers and highlights how YOLOvS8
can outperform other segmentation models in learning from a
small amount of data while still effectively capturing signifi-
cant features at the current stage of machine learning model
development.

V. CONCLUSION

This study demonstrates the effectiveness of the proposed
automated image segmentation method in enhancing the per-
formance of object detection models like YOLOvS. The results
showed that by incorporating a proportion of auto-labeled data
into the training set at each iteration, the model’s performance
can be significantly improved. It was also observed that the
rate of improvement is more influenced by the initial dataset
size, which provides the initial training weights and accuracy
of the model, than by the A value, which dictates the proportion
of data to be auto-labeled in each cycle. This implies that the
success of the model in this research heavily depends on the
model’s ability to capture the common features and shapes



of the object from the given initial dataset at the start of the
training process.

The current implementation of the proposed method with
the YOLOv8 model has been proven to succeed in both
improving model performance and creating an automatically
and accurately segmented dataset for the clear dataset. This
enhanced performance persisted even in scenarios where the
initial dataset’s size was reduced to a minimum of 20 per
class or even further, with missing data for certain classes.
In instances where the model failed to capture the common
features of the dataset due to its reduced size, the Simple
Data Duplication method enabled the model to learn from an
increased size of the initial dataset from the minimal dataset,
and performance was mostly restored.

However, there were still limitations when our algorithm
was utilized across a broader range of datasets. These lim-
itations became apparent during our experiments with the
HAMI10000 dataset. As previously discussed, if the dataset
is severely skewed or characterized by ambiguous shapes and
features, there is a high likelihood that models performing well
on certain dataset classes might fail to generate accurate seg-
mentation data for subsequent training iterations. This implies
that the algorithm’s success largely depends on the inherent
performance of the model on the dataset. These limitations
might be mitigated by utilizing our method exclusively for
clean datasets or by improving the model’s structure so that it
can inherently perform better on specific datasets.

Additionally, the application of our algorithm to the One-
Former model has shown that the successful performance of
our algorithm also largely depends on the models that demon-
strate great efficiency in capturing the shapes and features of
the image data with a small amount of data given at the start
of the training process. Because vision transformer models
require a comparatively larger amount of data and compu-
tational resources for their learning process, they struggle
to capture sufficient features and shapes from the smaller-
sized initial datasets used in this research’s experiments. This
might improve as vision transformer models enhance both their
efficiency and performance through further development in the
near future, thereby enabling better training even with smaller
sizes of datasets and improving their training efficiency.

To summarize, the performance of our algorithm demon-
strates an efficient method for creating segmentation of image
data with minimal manual effort. Our method even improves
the detection performance of the model on the dataset with
this self-generated dataset. This holds true even for datasets
containing unique categories that are not learned from its
pretrained weights but are newly learned. However, there are
still some limitations. Notably, the algorithm’s success largely
depends on the performance of the model it utilizes and
the clean status of the dataset that the model can inherently
comprehend. This limitation might be mitigated by improving
the quality of the dataset through preprocessing the image data,
or by further improvement of the vision models themselves
by making modifications to adapt to the specific dataset in the
future researches.
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