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Abstract

This project conducts a comprehensive ablation study on applying Reinforcement
Learning (RL) to the Financial Question Answering (FinQA) task. To isolate the
effects of model complexity and learning paradigms, we separate our research into
two parallel tracks. Track 1 (Deep RL) investigates the efficiency and stability
of PPO and GRPO on Large Language Models (Llama-3.2-3B) for discrimina-
tive ranking tasks. Track 2 (Heuristic Bandits) explores exploration-exploitation
trade-offs using non-contextual multi-armed bandits. Additionally, we present an
Extension Study applying RLOO and DPO to weaker models (TinyLlama-1.1B)
to test the hypothesis that RL benefits are inversely proportional to base model
capability. Our findings indicate that for capable small models (3B), Supervised
Fine-Tuning (SFT) is more efficient and stable than RL, whereas RL methods
provide significant gains for weaker learners (1B).

1 Introduction

Financial Question Answering (FinQA) requires complex multi-step reasoning, retrieving evidence
from unstructured text, and performing numerical calculations. While Large Language Models
(LLMs) have shown promise in this domain, ensuring their reliability and efficiency remains a
challenge.

This project aims to answer three key research questions:

1. Efficiency vs. Stability: How do different RL algorithms (PPO vs. GRPO) compare in
terms of computational efficiency and training stability?

2. The “RL Gap”: Does Reinforcement Learning provide meaningful gains over strong
Supervised Fine-Tuning baselines for discriminative reasoning tasks?

3. Model Capability: Does the impact of RL training vary significantly between “strong”
small models (3B) and “weak” small models (1B)?

To answer these, we developed a unified training framework that supports diverse algorithms (SFT,
PPO, GRPO, RLOO, DPO) and evaluated them on the FinQA dataset.

2 Related Work

Financial Reasoning & Datasets. The domain of financial NLP has evolved from simple sentiment
analysis to complex reasoning tasks that require hybrid processing of text and structured tables.
The FinQA dataset [1] serves as a primary benchmark for this task, requiring models to retrieve
evidence and perform arithmetic calculations. While large proprietary models perform well on such
tasks, smaller open-source models often struggle with the strict syntactic requirements of generating
executable reasoning programs.



Reinforcement Learning for Reasoning. Reinforcement Learning from Human Feedback (RLHF)
has become the standard for aligning LLMs. PPO [4] is the dominant algorithm but imposes
significant memory overhead due to the need for a separate value network and a frozen reference
model. To address this, recent works have proposed more efficient alternatives. DPO [? ] optimizes
preferences directly without a reward model, while GRPO (Group Relative Policy Optimization),
introduced in DeepSeekMath [5], eliminates the critic by using group-based outcome averaging as a
baseline. Similarly, RLOO (REINFORCE Leave-One-Out) [? ] reduces variance in REINFORCE-
style estimators, making it particularly suitable for reasoning tasks with sparse rewards.

Discriminative Reranking vs. Generation. A key challenge in applying RL to reasoning is the
difficulty of exploration in a vast generative action space. Cobbe et al. [2] demonstrated that training
a “verifier” (or ranker) to judge the correctness of candidate solutions is often more sample-efficient
than training a generator to produce the correct solution from scratch. Our Track 1 methodology
aligns with this paradigm: by reformulating the reasoning task as a discriminative ranking problem
among K candidates, we bypass the instruction-following difficulties inherent in small generative
models.

Efficient Fine-Tuning. To enable these experiments on consumer-grade hardware, we rely on Low-
Rank Adaptation (LoRA) [3], which freezes the pre-trained model weights and injects trainable rank
decomposition matrices, significantly reducing the memory footprint of RL training.

3 Methodology

We propose a multi-track approach to isolate the effects of contextual understanding (Deep RL)
versus simple statistical learning (Bandits).

3.1 Task Definition and Data

All experiments utilize the FinQA dataset. The raw data consists of financial reports containing text
segments and structured tables. We preprocess these into (Context, Question, Answer) triples.

Evaluation Metrics: We employ a unified evaluation suite measuring:

• Exact Match (EM): Whether the prediction exactly matches the gold answer.

• Numeric Accuracy: Whether the predicted value is within a tolerance (5–10%) of the
ground truth.

• Logical Validity: Whether the reasoning program is syntactically correct.

3.2 Track 1 Approach: Discriminative Reranking

Authored by Jinyoon Kim

Our initial approach attempted Generative RL (training models to write JSON programs), which
resulted in a 12% parse rate failure. To overcome this, we pivoted to a Discriminative (Ranking)
formulation. Instead of modeling P (wt|w<t, c), we model the probability of selecting the best
candidate answer y from a set Y = {y1, ..., yK}:

P (yk|x, Y ) = softmax(fθ(x, yk)) (1)

This shift reduces the cognitive burden on the model from construction to verification.

Action Space (K = 8). For every question, we generate a discrete pool of 8 candidates:

• Gold (1x): The ground truth answer.

• Similar (Nx): Plausible distractors (e.g., values perturbed by ±10%).

• Corrupted (Mx): Obvious errors (e.g., wrong operations).

Dense Reward Function. We designed a composite scalar reward signal:

Rtotal = 1.0 · Iexact + 0.9 · Inumeric + 0.5 · Ilogic + 0.3 · Iformat (2)
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Figure 1: Track 1 System Architecture. Left: A concrete example of the action space, showing
Gold, Similar, and Corrupted candidates. Right: The data flow where the Llama-3 model acts as a
shared policy to output scalar scores for each candidate, which are optimized via PPO or GRPO.

3.3 Track 2 Approach: Heuristic Bandits

Authored by Scarlett Yu

In this track, we study a lightweight approach using non-contextual multi-armed bandits. We have a
finite set of arms A = {0, 1, 2} where each arm corresponds to a fixed heuristic:

• Arm 0 (Token Overlap): Selects the cell with the largest token-set intersection.

• Arm 1 (Max Value): Selects the largest numeric value in the table.

• Arm 2 (Random): Selects a uniformly random cell.

We use an ϵ-greedy policy: with probability ϵt choose an arm uniformly at random, and with
probability 1− ϵt choose the greedy arm argmaxa∈A Qt(a). The exploration rate decays over time
over the training horizon T :

ϵt = max

(
0, ϵ0

(
1− t

T

))
, ϵ0 ≈ 0.5.

We maintain an action-value estimate Qt(a) for each arm. After selecting at and observing reward rt
(binary relevance), we update only the chosen arm via:

Qt+1(at) ← Qt(at) + αt

[
rt −Qt(at)

]
3.4 Reinforcement Learning Algorithms

Proximal Policy Optimization (PPO). PPO [4] is the standard on-policy RL algorithm used for
aligning LLMs. It optimizes a policy πθ to maximize expected reward while constraining the update
to stay close to the pre-trained behavior policy πref . The objective function is given by:

LPPO(θ) = E(x,y)∼Dπθold

[min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]− βKL(πθ||πref ) (3)

where rt(θ) =
πθ(y|x)

πθold
(y|x) is the probability ratio, At is the generalized advantage estimate, and ϵ is a

clipping hyperparameter (typically 0.2).

Computational Cost: PPO requires four models in memory: the active Policy, the frozen Refer-
ence model, the Value function (Critic), and usually a separate Reward model. This high VRAM
requirement is a primary bottleneck for training 3B+ parameter models on consumer hardware.
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Group Relative Policy Optimization (GRPO). GRPO [5] serves as a more efficient alternative to
PPO for reasoning tasks. It eliminates the need for a separate value function (Critic) model. Instead,
for each question q, it samples a group of G outputs and estimates the advantage Ai directly from
group statistics:

Ai =
ri −mean({r1, ..., rG})

std({r1, ..., rG}) + ϵ
(4)

Direct Preference Optimization (DPO). (To be completed by Teammate) DPO [? ] optimizes
preferences directly without a reward model using the implicit reward formulation.

REINFORCE Leave-One-Out (RLOO). (To be completed by Teammate) RLOO [? ] uses a
variance-reduced estimator where the baseline is the average reward of the other K − 1 samples.

4 Experimental Setup

Track 1 (Deep RL). We trained a Llama-3.2-3B model using LoRA (Rank=16). We conducted two
experimental runs:

• Run 001 (Standard): 10 epochs, frequent evaluation.

• Run 002 (Extended): 20 epochs, to test convergence stability.

The baseline model (SFT) was trained using Cross-Entropy loss to maximize the likelihood of the
Gold candidate.

Extension (Weak Learners). We utilized TinyLlama-1.1B fine-tuned with LoRA on CPU to
compare RLOO and DPO against SFT.

Track 2 (Bandits). We trained an ε-greedy bandit for 10, 000 episodes, with ε decaying linearly
from 0.5 to 0.

5 Results and Analysis

5.1 Track 1 Results: The SFT Ceiling (3B Model)

Analysis by Jinyoon Kim

We compared SFT, PPO, and GRPO on the Llama-3.2-3B model.

Figure 2: Performance Comparison (Accuracy vs. Reward Ratio). The SFT baseline (left)
achieved the highest accuracy. While PPO maintained stability (blue bars), GRPO degraded in
extended training runs (rightmost bar).

4



Table 1: Track 1 Results: SFT Baseline vs. RL Agents

Model Configuration Top-1 Accuracy Reward Ratio ∆ from SFT
SFT Baseline 92.87% 95.27% –
PPO (Run 001) 92.75% 95.43% -0.12%
GRPO (Run 001) 92.07% 95.16% -0.80%
GRPO (Run 002) 91.39% 94.82% -1.48%

Contrary to our initial hypothesis, RL training failed to outperform the SFT baseline. Our analysis
identifies three key reasons:

1. The “SFT Ceiling”: The ranking task, while semantically complex, proved structurally
simple for the SFT model, which achieved ∼93% accuracy immediately. This left very little
exploration room for RL agents to discover novel strategies.

2. Stability vs. Efficiency Trade-off: PPO remained highly stable (within 0.3% of baseline)
due to the KL-penalty anchoring it to the reference model. GRPO, lacking this anchor,
degraded significantly in the extended run (-1.48%), suggesting it began overfitting to the
reward proxy or “gaming” the noise in the candidate pool.

5.2 Extension Results: The RL Gap (1B Model)

Analysis by Donggen Li

To test if RL benefits weaker models, we repeated the experiment with TinyLlama-1.1B.

Table 2: TinyLlama-1.1B: Baseline vs. RL Methods

Method Accuracy Avg Reward Reward Gap
Baseline (SFT) 0.105 0.601 0.699
DPO 0.360 1.028 0.272
RLOO 0.460 1.057 0.243

Analysis. Unlike the 3B model, the 1B model benefited massively from RL. RLOO improved
accuracy by +35.5 percentage points over SFT. This confirms that RL is a powerful amplifier for
weak learners, even if it has diminishing returns on stronger models.

5.3 Track 2 Results: Bandit Learning

Analysis by Scarlett Yu

Figure 3: Moving-average reward during non-contextual bandit training.
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Early in training, the bandit explores all arms randomly. As ε decays, the agent learns to ignore
the Random arm (Arm 2) and converges on the Token Overlap and Max Value heuristics. This
demonstrates that simple ε-greedy bandits can reliably identify optimal heuristics from noisy signals
without contextual features.

6 Conclusion

This project demonstrates that the effectiveness of Reinforcement Learning in financial reasoning is
highly context-dependent.

• For capable models (3B) on discriminative tasks, RL adds complexity without gains; SFT
is superior.

• For weaker models (1B), RL algorithms (RLOO/DPO) provide massive boosts (+35%),
validating RL for alignment.

• For heuristic selection, simple bandits successfully identify strategies without deep learning
costs.
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