A Reinforcement Learning
Pipeline for Financial
Reasoning (FinQA)

Jinyoon Kim, Scarlett Yu, Donggen Li

Shared Goal & Problem Definition

The Task: Financial Question Answering (FinQA)
e Input: Financial reports containing both unstructured text and structured tables.
e Challenge: Multi-step reasoning involves retrieving evidence and performing calculations.

e Research Goal: Conduct an ablation study to answer: How do different RL methods affect efficiency,
stability, and performance?.

Unified Framework
e Shared Dataset: FinQA (preprocessed into Question-Context-Answer triples).

e Shared Metrics: Exact Match (EM), Numeric Accuracy, and Logical Validity.

Project Structure — Two Parallel Tracks

To isolate variables, we split our research into two distinct methodological tracks.
e Track 1: Deep Contextual RL
o Agent: Large Language Model (Llama-3.2-3B).

o Goal: Train a neural agent to learn complex financial reasoning patterns using PPO and
GRPO.

e Track 2: Heuristic Bandits
o Agent: Multi-Armed Bandit (epsilon-Greedy).

o Goal: Study exploration-exploitation trade-offs using simple statistical learning.
(Teammates will detail Track 2 in subsequent slides

Track 1 Challenge — The Generative Blocker

Initial Approach (Generative RL):

e We initially attempted to train Llama-3 to generate full JSON programs character-by-character.
The Critical Failure:

e The model struggled to learn syntax and reasoning simultaneously.

e Result: The JSON parse rate stuck at 12%, providing a sparse reward signal that made RL training
impossible.

The Pivot (Discriminative RL):
e We shifted the objective from Generation to Ranking.

e Advantage: This reduces the burden on the 3B model. It no longer needs to construct the answer, only
verify the correct logic.

Methodology — Action Space & Rewards

Constructing the Action Space (K=8):
e For every question, we generate a discrete pool of 8 options to force fine-grained discrimination:
1. 1x Gold: The ground truth answer.
2. Nx Similar: Plausible distractors (e.g., values perturbed by * 10%).
3. Mx Corrupted: Obvious errors (e.g., wrong operations, invalid formats).
Dense Reward Function:
e We replaced sparse binary rewards with a composite signal to guide learning:
e R_total = 1.0(R_exact) + 0.9(R_numerical) + 0.5(R_logic) + 0.3(R_format)

e Note: "Numerical" allows for small rounding errors; "Logic" rewards valid program steps.

Track 1 System Architecture

Single Data Example

Context:
“C%mpany X revenue was $10M and expenses
were $8M in 2023."

Question:

"What was the net income?"

Candidate 1 (Gold):

10-8=2

Candidate 2 (Similar):

10 - 8 = 3 (Arithmetic Error)

Candidate 3 (Corrupted):

10 + 8 = 18 (Wrong Operation)

Action Space (K=8)

Input A
[Context, Q, Gold]

Llama-3.2-3B
(Shared Policy)

Input B
[Context, Q, Similar]

LoRA Adapter
(Rank=16)

Loss Calc

PPO / GRPO

Pooling

Input C
[Context, Q, Corrupt]

L

Last Hidden State

Scalar Scores

Logits (1xK)

—
Score Head /

Linear Layer

e

Track 1 Algorithms (PPO & GRPO)

To optimize this ranking objective, we implemented and compared two RL algorithms:

e Algorithm 1: PPO (Proximal Policy Optimization)

o Mechanism: Optimizes the policy to select the best candidate while staying close to the SFT
reference model (using a KL penalty).

o Role: Serves as the stable, standard baseline for Deep RL.
e Algorithm 2: GRPO (Group Relative Policy Optimization)

o Mechanism: Samples a group of candidates and optimizes based on their relative advantage
compared to the group mean.

o Hypothesis: More efficient for ranking tasks as it removes the need for a separate reference model
(reducing memory usage).

Experimental Setup

Model Architecture:

e Base: Llama-3.2-3B optimized with LoRA (Rank=16).

e Head: Linear layer projecting the final hidden state to a scalar reward score.
Experimental Configurations:

e Run 001 (Standard): 10 Epochs, stronger per-batch optimization (4 PPO epochs).

e Run 002 (Extended): 20 Epochs, reduced batch size, designed to test convergence and stability.
Baselines:

e SFT Baseline: Trained via Cross-Entropy loss to maximize the probability of the Gold candidate.

Experimental Results

Top-1 Accuracy (%)

Track 1 Results: SFT vs RL Performance Model Top-1 Reward Delta from
96 96 Configurati Accuracy Ratio SFT
—— 95.43% 95.43% o
95 1 Los
SFT 92.87% 95.27% -
<Y Baseline
94 YR
(°]
E PPO (Run 92.75% 95.43% -0.12%
93 93 & 001)
e
(1]
921 Loz 3 PPO (Run 92.53% 95.43% -0.34%
© 002)
91 o1
GRPO (Run 92.07% 95.16% -0.80%
001)
90 - L oo
oy pase ™ op0 (RUD E opO (R0 ? ore0 R° > ore0 B° » GRPO (Run | 91.39% 94.82% -1.48%
002
B Top-1 Accuracy (%) [Reward Ratio (%))

Observation: The SFT baseline essentially reached the task "ceiling" immediately. PPO remained stable (due to
KL penalty), while GRPO degraded significantly in extended training runs.

Analysis — Why Did RL Struggle?

1. The SFT Ceiling Effect:

e The ranking task was structurally simple for the SFT model (92.87% accuracy). There was very little
"exploration” room left for RL agents to discover better strategies.

2. Stability vs. Efficiency:
e PPO: Remained stable largely due to the KL-penalty forcing it to stay close to the reference model.

e GRPO: Without a reference model anchor, the policy drifted in Run 002 (-1.48%), likely overfitting to the
reward proxy rather than improving reasoning.

3. Overfitting in Extended Runs:

e Doubling the training epochs (Run 002) consistently lowered accuracy, indicating that the agents began
"gaming" the reward function or overfitting to noise.

Track1 Conclusion

e Research Answer: For discriminative financial reasoning tasks using small LLMs (3B), Supervised
Fine-Tuning is more efficient and stable than Reinforcement Learning.

e Efficiency: SFT required ~50% less compute time (no value function, no rollouts) and achieved the highest
accuracy.

e Stability: RL methods introduced hyperparameter sensitivity and performance degradation over long
training runs.

e Recommendation: Discriminative RL is sufficiently solved by SFT in this domain; future research should
focus on Generative RL where the action space is infinite.

Extension: Why Perform RL on a Small Model?

e In Track 1, RL brought limited gains to the 3B model
e Large models already perform strong after SFT — small room to improve

e Small models (1B) have much weaker reasoning ability — RL effects are amplified

e Research question:
Can RL algorithms like RLOO and DPO significantly improve performance for weaker

models?

Experimental Setup

e We run all experiments on the TinyLlama-1.1B-Chat model and keep the main FinQA
candidate-ranking task unchanged.

e Our study compares three training strategies — SFT baseline, RLOO, and DPO —
built entirely on our custom training pipeline.

e To support lightweight CPU-friendly experiments, we implemented new training scripts,
a unified evaluation framework, and a run-comparison tool.

RLOO & DPO — Why These Two Methods?

e RLOO reduces variance by comparing each action to "leave-one-out”
baselines, making it stable for small models with noisy reward signals.

e DPO directly optimizes model preferences between good and bad
answers, offering a simple and efficient improvement path without policy
rollouts.

e Both algorithms are lightweight and work well in CPU-only environments,
making them ideal for extending RL training to small models.

t_best_reward

accuracy_selec

o
S

0.3 1

0.2 -

0.1 1

0.0 -

Performance Comparison (TinyLlama-1.1B)

accuracy_select_best_reward comparison

ase® 00 or0

avg_reward

1.0 4

0.8 |

o
o

o
S
1

0.2 |

0.0 -

avg_reward comparison

hit_gold rate comparison

0.4

o
w
1

hit_gold_rate

o
N

0.11

0.0

reward_gap

o
w

reward_gap comparison

0.7 1

0.6 1

o
o
Il

o
E=N
I

0.2 1

0.1

0.0-

gine

ao0

o0

Quantitative Results

Method Accuracy T Avg Reward 1t Reward Gap ¥ Hit Gold 1t
Baseline 0.105 0.601 0.699 0.105
DPO 0.360 1.028 0.272 0.360
RLOO 0.460 1.057 0.243 0.460

e RL methods significantly outperform the SFT baseline on all metrics.
¢ RLOO shows the strongest gains in selection accuracy (+35%) and reward quality.

e Both RLOO and DPO reduce reward gap, indicating better candidate discrimination.

Conclusion & Takeaways

e RL can meaningfully improve reasoning performance for small
models—much more than for 3B+ models in Track 1.

e RLOO is the most effective among lightweight RL methods for
small-model FinQA reasoning.

e Our extended pipeline (training, evaluation, comparison tools) enables
reproducible small-model RL without GPU reliance.

Track 2 — Bandit-Based Heuristics

Problem Setup

e Task: Select the relevant table cell for answering financial questions in FinQA.
e Instead of designing one heuristic, treat each heuristic as an arm in a non-contextual multi-armed bandit.

Three Heuristic Arms

e Arm 0 - Token Overlap:
Select the cell with the largest lexical overlap with the question.
e Arm 1 - Maximum Numeric Value:

Parse numbers, handle % and parentheses (negative values), choose the largest numeric entry.
e Arm 2 - Uniform Random:

Baseline; selects a random table cell.

Track 2 — Bandit-Based Heuristics

Reward Design

e Bandit receives binary reward {0,1} based on:
o Substring match between selected cell and gold evidence strings
o OR 22 shared tokens with an evidence sentence

e This creates a noisy but meaningful weak reward signal.

Bandit Algorithm

e Non-contextual e-greedy, € decays from 0.5 to 0
e Updates sample means QLI incrementally
e Trained for 10,000 episodes (each episode is a random FinQA example)

Track 2 Results

Learning Behavior

e Moving-average reward increases steadily as € decays.
e Early phase: mixture of all arms; reward is low due to exploration and random arm.
e Later phase: bandit commits to the better-performing heuristics.

Performance Insights

e Arm 2 (random) performs worst — the bandit learns to avoid it.

e Arm O (token overlap) and Arm 1 (numeric) both yield meaningfully higher reward, depending on the dataset
distribution.

e Bandit’s long-run average reward approaches the reward of the best static heuristic, despite noisy rewards.

Conclusion

e Even with noisy supervision and very simple heuristics,
the bandit can reliably identify the best heuristic over time.
e Demonstrates that bandit-based exploration—exploitation is a viable method for heuristic selection in financial QA.

