
A Reinforcement Learning 
Pipeline for Financial 
Reasoning (FinQA)

Jinyoon Kim, Scarlett Yu, Donggen Li



Shared Goal & Problem Definition

The Task: Financial Question Answering (FinQA)

● Input: Financial reports containing both unstructured text and structured tables.

● Challenge: Multi-step reasoning involves retrieving evidence and performing calculations.

● Research Goal: Conduct an ablation study to answer: How do different RL methods affect efficiency, 
stability, and performance?.

Unified Framework

● Shared Dataset: FinQA (preprocessed into Question-Context-Answer triples).

● Shared Metrics: Exact Match (EM), Numeric Accuracy, and Logical Validity.



Project Structure – Two Parallel Tracks

To isolate variables, we split our research into two distinct methodological tracks.

● Track 1: Deep Contextual RL

○ Agent: Large Language Model (Llama-3.2-3B).

○ Goal: Train a neural agent to learn complex financial reasoning patterns using PPO and 
GRPO.

● Track 2: Heuristic Bandits

○ Agent: Multi-Armed Bandit (epsilon-Greedy).

○ Goal: Study exploration-exploitation trade-offs using simple statistical learning.
(Teammates will detail Track 2 in subsequent slides



Track 1 Challenge – The Generative Blocker

Initial Approach (Generative RL):

● We initially attempted to train Llama-3 to generate full JSON programs character-by-character.

The Critical Failure:

● The model struggled to learn syntax and reasoning simultaneously.

● Result: The JSON parse rate stuck at 12%, providing a sparse reward signal that made RL training 
impossible.

The Pivot (Discriminative RL):

● We shifted the objective from Generation to Ranking.

● Advantage: This reduces the burden on the 3B model. It no longer needs to construct the answer, only 
verify the correct logic.



Methodology – Action Space & Rewards

Constructing the Action Space (K=8):

● For every question, we generate a discrete pool of 8 options to force fine-grained discrimination:

1. 1x Gold: The ground truth answer.

2. Nx Similar: Plausible distractors (e.g., values perturbed by ± 10%).

3. Mx Corrupted: Obvious errors (e.g., wrong operations, invalid formats).

Dense Reward Function:

● We replaced sparse binary rewards with a composite signal to guide learning:

● R_total = 1.0(R_exact) + 0.9(R_numerical) + 0.5(R_logic) + 0.3(R_format)

● Note: "Numerical" allows for small rounding errors; "Logic" rewards valid program steps.



Track 1 System Architecture



Track 1 Algorithms (PPO & GRPO)

To optimize this ranking objective, we implemented and compared two RL algorithms:

● Algorithm 1: PPO (Proximal Policy Optimization)

○ Mechanism: Optimizes the policy to select the best candidate while staying close to the SFT 
reference model (using a KL penalty).

○ Role: Serves as the stable, standard baseline for Deep RL.

● Algorithm 2: GRPO (Group Relative Policy Optimization)

○ Mechanism: Samples a group of candidates and optimizes based on their relative advantage 
compared to the group mean.

○ Hypothesis: More efficient for ranking tasks as it removes the need for a separate reference model 
(reducing memory usage).



Experimental Setup

Model Architecture:

● Base: Llama-3.2-3B optimized with LoRA (Rank=16).

● Head: Linear layer projecting the final hidden state to a scalar reward score.

Experimental Configurations:

● Run 001 (Standard): 10 Epochs, stronger per-batch optimization (4 PPO epochs).

● Run 002 (Extended): 20 Epochs, reduced batch size, designed to test convergence and stability.

Baselines:

● SFT Baseline: Trained via Cross-Entropy loss to maximize the probability of the Gold candidate.



Experimental Results

Observation: The SFT baseline essentially reached the task "ceiling" immediately. PPO remained stable (due to 
KL penalty), while GRPO degraded significantly in extended training runs.

Model 
Configurati
on

Top-1 
Accuracy

Reward 
Ratio

Delta from 
SFT

SFT 
Baseline

92.87% 95.27% --

PPO (Run 
001)

92.75% 95.43% -0.12%

PPO (Run 
002)

92.53% 95.43% -0.34%

GRPO (Run 
001)

92.07% 95.16% -0.80%

GRPO (Run 
002)

91.39% 94.82% -1.48%



Analysis – Why Did RL Struggle?

1. The SFT Ceiling Effect:

● The ranking task was structurally simple for the SFT model (92.87% accuracy). There was very little 
"exploration" room left for RL agents to discover better strategies.

2. Stability vs. Efficiency:

● PPO: Remained stable largely due to the KL-penalty forcing it to stay close to the reference model.

● GRPO: Without a reference model anchor, the policy drifted in Run 002 (-1.48%), likely overfitting to the 
reward proxy rather than improving reasoning.

3. Overfitting in Extended Runs:

● Doubling the training epochs (Run 002) consistently lowered accuracy, indicating that the agents began 
"gaming" the reward function or overfitting to noise.



Track1 Conclusion

● Research Answer: For discriminative financial reasoning tasks using small LLMs (3B), Supervised 
Fine-Tuning is more efficient and stable than Reinforcement Learning.

● Efficiency: SFT required ~50% less compute time (no value function, no rollouts) and achieved the highest 
accuracy.

● Stability: RL methods introduced hyperparameter sensitivity and performance degradation over long 
training runs.

● Recommendation: Discriminative RL is sufficiently solved by SFT in this domain; future research should 
focus on Generative RL where the action space is infinite.



Extension: Why Perform RL on a Small Model?

● In Track 1, RL brought limited gains to the 3B model

● Large models already perform strong after SFT → small room to improve

● Small models (1B) have much weaker reasoning ability → RL effects are amplified

● Research question:

 Can RL algorithms like RLOO and DPO significantly improve performance for weaker 

models?



Experimental Setup

● We run all experiments on the TinyLlama-1.1B-Chat model and keep the main FinQA 
candidate-ranking task unchanged.

● Our study compares three training strategies — SFT baseline, RLOO, and DPO — 
built entirely on our custom training pipeline.

● To support lightweight CPU-friendly experiments, we implemented new training scripts, 
a unified evaluation framework, and a run-comparison tool.



RLOO & DPO — Why These Two Methods?

● RLOO reduces variance by comparing each action to "leave-one-out" 
baselines, making it stable for small models with noisy reward signals.

● DPO directly optimizes model preferences between good and bad 
answers, offering a simple and efficient improvement path without policy 
rollouts.

● Both algorithms are lightweight and work well in CPU-only environments, 
making them ideal for extending RL training to small models.



Performance Comparison (TinyLlama-1.1B)





Quantitative Results

● RL methods significantly outperform the SFT baseline on all metrics.

● RLOO shows the strongest gains in selection accuracy (+35%) and reward quality.

● Both RLOO and DPO reduce reward gap, indicating better candidate discrimination.



 Conclusion & Takeaways

● RL can meaningfully improve reasoning performance for small 
models—much more than for 3B+ models in Track 1.

● RLOO is the most effective among lightweight RL methods for 
small-model FinQA reasoning.

● Our extended pipeline (training, evaluation, comparison tools) enables 
reproducible small-model RL without GPU reliance.



Track 2 – Bandit-Based Heuristics

Problem Setup

● Task: Select the relevant table cell for answering financial questions in FinQA.
● Instead of designing one heuristic, treat each heuristic as an arm in a non-contextual multi-armed bandit.

Three Heuristic Arms

● Arm 0 – Token Overlap:
Select the cell with the largest lexical overlap with the question.

● Arm 1 – Maximum Numeric Value:
Parse numbers, handle % and parentheses (negative values), choose the largest numeric entry.

● Arm 2 – Uniform Random:
Baseline; selects a random table cell.



Track 2 – Bandit-Based Heuristics

Reward Design

● Bandit receives binary reward {0,1} based on:
○ Substring match between selected cell and gold evidence strings
○ OR ≥2 shared tokens with an evidence sentence

● This creates a noisy but meaningful weak reward signal.

Bandit Algorithm

● Non-contextual ε-greedy, ε decays from 0.5 to 0
● Updates sample means Qₖ incrementally
● Trained for 10,000 episodes (each episode is a random FinQA example)



Track 2 Results

Learning Behavior

● Moving-average reward increases steadily as ε decays.
● Early phase: mixture of all arms; reward is low due to exploration and random arm.
● Later phase: bandit commits to the better-performing heuristics.

Performance Insights

● Arm 2 (random) performs worst → the bandit learns to avoid it.
● Arm 0 (token overlap) and Arm 1 (numeric) both yield meaningfully higher reward, depending on the dataset 

distribution.
● Bandit’s long-run average reward approaches the reward of the best static heuristic, despite noisy rewards.

Conclusion

● Even with noisy supervision and very simple heuristics,
the bandit can reliably identify the best heuristic over time.

● Demonstrates that bandit-based exploration–exploitation is a viable method for heuristic selection in financial QA.


