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Abstract—Skin cancer is one of the most prevalent
and deadliest diseases worldwide. Traditional detection
methods, relying on visual examination and biopsy, are
time-consuming. Early detection is crucial, as delays can
significantly risk patients’ lives. Advances in machine
learning, particularly in computer vision, have enabled
faster and more accurate detection of skin cancer. YOLO
(You Only Look Once) is a state-of-the-art model for
object detection, known for its high accuracy and speed.
In 2023, Ultralytics released the latest version, YOLOv8.
This research proposes the YOLO-SCSA model, which
enhances performance by integrating both general and
domain-specific attention modules. Our SCSA attention
module combines mechanisms from previous attention
modules and introduces a new branch for richer feature
understanding. Additionally, the Center Weighted Mask-
ing module improves focus on crucial parts of the feature
map, enhancing performance on the skin cancer dataset
within the YOLOv8 architecture.

Index Terms—Computer Vision, Skin Lesion Detec-
tion, YOLOv8, Object Detection, Spatial Average Pool-
ing, Global Average Pooling, Coordinate Attention, Shuf-
fle Attention, HAM10000

I. INTRODUCTION

There has been extensive research on deep neu-
ral networks (DNNs) for skin cancer detection since
the emergence of computer vision in artificial intelli-
gence [1]–[4]. DNN-based models have shown strong
performance in detecting skin cancer, often matching
or surpassing human experts in various studies [3], [5].
These models have been used for both classifying and
localizing skin cancer, demonstrating their viability for
industrial applications in dermatology.

YOLO (You Only Look Once) [6] is a state-of-the-
art object detection model that has been effectively
used for skin cancer detection. Prior studies have
trained YOLO on skin cancer datasets with impressive
results. We chose YOLOv8 [7], the latest version by

Ultralytics, as the baseline for our architecture due to
its advancements over previous versions.

The attention mechanism is a crucial innovation in
computer vision, enhancing neural networks’ ability
to process images by focusing on relevant features.
Originally developed for machine translation [8], at-
tention mechanisms have been adapted for various
vision tasks, including the Convolutional Block At-
tention Module (CBAM), which sequentially applies
channel and spatial attention to improve model perfor-
mance [9].

Our research integrates the baseline YOLOv8 model
with novel attention modules, combining efficient
mechanisms from prior attention modules with a new
branch to enhance performance in skin cancer de-
tection. We also explore a center weighted masking
module to improve focus on key sections of the feature
map, enhancing detection in dermoscopic images. The
main contributions of this paper are:

1) Develop a novel attention module integrating
mechanisms from prior attention modules with
a new branch.

2) Implement a center weighted masking module
to enhance YOLOv8’s focus on key feature
map sections, particularly for dermoscopic skin
images.

3) Demonstrate that the integrated attention mod-
ule and YOLOv8 baseline model outperform
the original YOLOv8 and other state-of-the-art
attention modules across various performance
metrics.

The remainder of this article is organized as fol-
lows: Section II reviews recent works on skin cancer
detection with DNNs. Section III details our methodol-
ogy, presenting our proposed architecture and existing
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attention modules used for comparison. Section IV
describes the environmental settings and experimental
results. Section V discusses the comparison, research
implications, and limitations. Finally, the conclusion
summarizes the paper.

II. RELATED WORKS

Deep learning techniques, such as DNNs, have
been widely explored for detecting skin cancer since
the mid-1990s [10]. These models typically utilize
artificial neural networks (ANN) or convolutional neu-
ral networks (CNN). For instance, despite a limited
dataset, researchers in [11] trained a CNN model
for binary skin cancer diagnosis and achieved over
95% accuracy. More recently, YOLO, a CNN model
originally developed for object detection, has gained
popularity for skin cancer detection. In [12], YOLOv7
demonstrated superior performance for early skin
cancer diagnosis, while YOLO-based models in [2]
achieved over 98% accuracy in classifying nine types
of skin cancer. YOLO’s efficiency and real-time pro-
cessing capability make it suitable for advanced detec-
tion tools [13]. Notably, the latest version, YOLOv8,
was not utilized in these studies, motivating us to use
YOLOv8 as the baseline for our architecture due to its
state-of-the-art performance.

Attention mechanisms, such as CBAM, GAM, Shuf-
fle Attention, Coordinate Attention, and ECA, have
enhanced feature representation in computer vision
models. CBAM applies channel and spatial attention
sequentially [9], GAM uses gradient information to
focus on salient regions [14], Shuffle Attention com-
bines attention with a shuffle operation to capture
cross-dimensional interactions [15], Coordinate Atten-
tion encodes spatial information into channel atten-
tion [16], and ECA introduces a lightweight mecha-
nism to capture local cross-channel interactions with-
out dimensionality reduction, using a 1D convolution
whose kernel size is adaptively determined by the
channel dimension [17]. These modules inspired us
to integrate powerful attention mechanisms into the
YOLOv8 architecture for improved object detection in
skin lesions.

Previous research has integrated YOLO with at-
tention modules outside skin cancer detection. For
example, in [18], YOLOv3 combined with an im-
proved squeeze-and-excitation [19] module was used
for blood cell detection. SC-YOLO [20] enhanced
feature extraction for small objects with a cross-stage
attention network module. YOLOv8-AM [21] inte-
grated various attention modules for detecting pediatric
wrist fractures in X-ray images, improving perfor-
mance despite increased computational work. These
studies suggest that integrating attention modules with
YOLO can boost performance.

In summary, YOLO-SCSA integrates a novel atten-
tion module, inspired by previous mechanisms, into
the YOLOv8 architecture. This combination lever-

ages YOLOv8’s strengths and advanced attention tech-
niques to enhance efficiency and performance in skin
cancer detection tasks.

III. METHODOLOGY

A. Baseline Model: YOLOv8

The YOLO series is renowned for its exceptional
efficiency and accuracy in object detection due to
its single forward pass architecture, which signif-
icantly reduces processing time while maintaining
high accuracy. YOLOv8, the latest iteration, follows
this efficient structure and is divided into three main
sections: Backbone, Neck, and Head. The Backbone
extracts essential features, the Neck generates multi-
scale feature maps, and the Head predicts bounding
boxes, objectness scores, and class probabilities using
Distribution Focal Loss (DFL) [22] and Complete
Intersection over Union (CIoU) for bounding box loss,
and Binary Cross-Entropy (BCE) for class loss.

YOLOv8’s backbone is based on CSPDarknet53
(CSPNet), originally from YOLOv4, which incorpo-
rates Cross Stage Partial (CSP) [23] connections to
improve learning capability and reduce computational
complexity without compromising accuracy. CSPNet’s
residual connections help mitigate the vanishing gradi-
ent problem, enhancing convergence speed and allow-
ing deeper network training. Additionally, YOLOv8
replaces the C3 module of YOLOv5 with the faster C2f
module, improving execution speed while maintaining
performance [7].

The Neck, derived from Path Aggregation Network
(PANet), concatenates feature maps from different
backbone layers and processes them for the Head [24].
PANet enhances multi-scale feature propagation, im-
proving object localization across varying scales. The
Spatial Pyramid Pooling Fast (SPPF) module, an opti-
mized version of SPP, is integrated into the backbone,
providing multi-scale feature representation with fewer
floating-point operations.

YOLOv8’s detection head uses BCE loss for clas-
sification and a combination of CIoU and DFL for
bounding box regression. BCE loss calculates the error
between predicted and ground truth class probabilities:

BCE(ps, ts) =

− 1

N

N∑
i=1

[
tis log(p

i
s) +(1− tis) log(1− pis)

]
(1)

CIoU loss measures the overlap between predicted
and ground truth boxes, considering their distance and
aspect ratio:

CIoU(pb, tb) = 1− IoU(pb, tb) +
ρ2(cpb

, ctb)

c2
+ αv

(2)
DFL refines bounding box predictions by focusing

on the distribution of regression targets:
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DFL(pd, tb) =
∑

batches

∑
anchors

softmax(pd) · proj (3)

By integrating these loss functions, YOLOv8
achieves high accuracy and efficiency in object detec-
tion tasks.

B. Attention Modules

Coordinate Attention embeds positional informa-
tion into channel attention to enhance feature repre-
sentation, especially in mobile networks. It factorizes
channel attention into two 1D encoding processes,
capturing long-range dependencies along one spatial
direction while preserving positional information along
the other. This method starts with 1D global pooling
operations along vertical and horizontal directions,
creating direction-aware feature maps. These maps are
concatenated, transformed, and split into tensors that
generate attention weights applied to the input feature
map. This mechanism captures cross-channel relation-
ships and spatial dependencies, improving object local-
ization and performance in image classification, object
detection, and semantic segmentation with minimal
computational overhead. These features inspired our
integration of Coordinate Attention into the SCSA
module.

Shuffle Attention combines spatial and channel
attention mechanisms efficiently, suitable for environ-
ments with limited computational resources. It uses
Shuffle Units to process divided input feature maps
in parallel, with a unique ”channel shuffle” operation
facilitating information communication between sub-
features. Channel attention uses global average pooling
to create channel-wise statistics, while spatial attention
employs group normalization. The combined outputs
undergo a ”channel shuffle” operation, producing an
enriched feature map. This method effectively cap-
tures spatial and channel dependencies, enhancing
performance in image classification, object detection,
and semantic segmentation. These attributes led us to
integrate Shuffle Attention mechanisms into our SCSA
module.

C. Proposed Method: SCSA

The Spatially Coordinated Shuffling Attention
(SCSA) module is designed to integrate the strengths
of Shuffle Attention and Coordinate Attention while
introducing additional mechanisms to enhance spatial
information processing. This module aims to capture
both spatial and channel dependencies efficiently and
is particularly effective in environments where compu-
tational resources are limited.

The SCSA mechanism begins by dividing the input
feature map X of shape (N,C,H,W ) into G groups
along the channel dimensions:

X = [X1,X2, . . . ,XG], Xk ∈ C
C
G×H×W (4)

Each group Xk is then split into two branches for
channel and spatial attention:

Xk = [Xk1,Xk2], Xk1,Xk2 ∈ C
C
2G×H×W (5)

For channel attention, global average pooling (GAP)
is applied to the spatial dimensions of Xk1 to generate
channel-wise statistics:

s = GAP(Xk1) =
1

H ×W

H∑
i=1

W∑
j=1

Xk1(i, j) (6)

These channel-wise statistics are then scaled and
shifted using a gating mechanism with learnable pa-
rameters, followed by a sigmoid activation function
(σ):

Xchannel = σ(W1s+ b1) ·Xk1 (7)

The gating mechanism consists of W1 and b1,
which are learnable parameters for scaling and shift-
ing.

Spatial average pooling is a new branch added in
the SCSA module alongside the original mechanism
of coordinate attention that only utilizes x and y
pooling operations to understand spatial information
with channel-encoded information. The model uses the
original mechanism of coordinate attention to extract
spatially focused information from the feature, enrich-
ing spatial information on top of x and y pooling. This
spatial average pooling uses the channel dimension of
the feature map instead of the width and height dimen-
sions, thus capturing the average value of the channel
for each spatial location of the entire feature map.
This captures different aspects of spatial dependencies
within the entire channels.

To start with the x average pooling step, adaptive
average pooling is applied along the horizontal dimen-
sion:

Xh = poolh(Xk2) =
1

W

W∑
j=1

Xk2(:, :, j) (8)

Similarly, adaptive average pooling is applied along
the vertical dimension, followed by a permutation to
maintain the shape consistency:

Xw = poolw(Xk2) =
1

H

H∑
i=1

Xk2(:, i, :) (9)

Additionally, spatial average pooling is introduced
to enrich spatial information across the entire feature
map:

Xs = pools(Xk2) =
1

C

C∑
c=1

Xk2(c, :, :) (10)
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Fig. 1. An overview of the overall architecture for YOLO-SCSA.

Fig. 2. An overview of SCSA module.

The pooled features Xh and Xw are concatenated
along the spatial dimension and processed through a
shared 1 × 1 convolutional function to combine the
spatial information. The transformation through a 1×1
convolutional layer, group normalization, and the h-
swish activation function is expressed as:

Y = h-swish(gn(conv1×1(cat(Xh,Xw))))) (11)

The feature map Y is then split back into horizontal
and vertical components along the spatial dimension:

Y = [Yh,Yw], Yh,Yw ∈ C
C
2G×H×W (12)

Separate convolutional layers, denoted as Fh and
Fw, are applied to obtain the attention maps:

Ah = Fh(Yh) (13)

Aw = Fw(Yw) (14)

The attention maps are now multiplied element-
wise with the spatially pooled feature. The difference
between the attention maps are matched with the
broadcasting:

Ahws = Ah ·Aw ·Xs (15)

The final spatial attention map is obtained by apply-
ing a sigmoid activation (σ) and then multiplied with
the original spatial attention branch feature map Xk2

to apply the attention weight it had gained during the
process:
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Xspatial = Xk2 · σ(Ahws) (16)

The channel and spatial attention outputs are con-
catenated along the channel dimension:

X′
k = cat(Xchannel,Xspatial) ∈ C

C
G×H×W (17)

Finally, all sub-features are aggregated and a chan-
nel shuffle operation is applied to enable information
communication between different sub-features, pro-
ducing the final output feature map Y:

Y = ChannelShuffle([X′
1,X

′
2, . . . ,X

′
G]) (18)

This final output maintains the same shape as the
input but is enriched with enhanced spatial and channel
information. The SCSA module effectively combines
spatially coordinated information with additional spa-
tial average pooling and channel dependencies, re-
sulting in improved feature representation and perfor-
mance across various computer vision tasks. The in-
tegration of the module into the YOLOv8 architecture
is illustrated in Figure 1, and the inner structure of the
SCSA module is illustrated in Figure 2.

D. Proposed Method: CWM

Fig. 3. An overview of CWM module.

The Center Weighted Masking (CWM) module is
specifically designed to enhance the processing of skin
cancer dermoscopic image data within the architecture.
Upon analyzing the dataset, it was observed that the
main section of the skin lesion typically appears in
the center of the input image, while the bottom and
surrounding areas often contain confounding factors
such as Dark Corner Artifacts (DCA) [25]. Previous
research efforts to remove these areas from the image
data directly resulted in negligible improvements in
model performance, often considered accidental or
even detrimental in our experimental setup.

To address this, we developed the CWM module,
which applies a Gaussian-like attention map to focus
more on the central region of the input features and
reduce the influence of the bottom areas. This atten-
tion map is generated using a Gaussian function that
smoothly decreases attention from the center to the
edges, particularly towards the bottom of the image.

By doing so, the CWM module effectively weakens the
feature values in the less relevant bottom regions, thus
improving the model’s focus on the important central
lesion area. The construction and application of this
Gaussian-based attention map in three dimensions are
illustrated in Figure 1. The adjustment of the module
into the YOLOv8 architecture is illustrated in Figure
3.

IV. EXPERIMENTS

A. Dataset: HAM10000

For the dataset choice, we selected the HAM10000
dataset [26], which is widely used and well-regarded
in dermatoscopic image analysis. The HAM10000
dataset, also known as “Human Against Machine
with 10000 training images,” comprises 10,015 multi-
source dermatoscopic images of common pigmented
skin lesions. It includes both melanocytic and non-
melanocytic lesions, ensuring comprehensive cover-
age of conditions encountered in clinical practice.
Each image is accompanied by detailed metadata,
with over 50% confirmed by pathology and the rest
verified through follow-up, expert consensus, or in-
vivo confocal microscopy. Additionally, the dataset
offers professional-level segmentation labels, making
it highly reliable for object detection tasks.

For our experiments, we utilized mosaic data aug-
mentation, an in-built feature of the YOLOv8 frame-
work, to enhance the robustness and generalization
capabilities of our model. We used a fixed input size
of 512x512 for all model types to ensure uniformity.
The dataset was split into training and validation sets
with an 80:20 ratio. This setup provided diverse and
varied training samples, allowing us to achieve reliable
and accurate results in the automated diagnosis of
pigmented skin lesions.

B. Environmental Setting

For the environmental setting, we used PyCharm
IDE and utilized the PyTorch framework for the cre-
ation of new modules, since YOLOv8 is built on the
same framework. For the graphic card, we utilized
the online service Vast.ai, which offers a variety of
GPUs for training and running models. Specifically,
we chose the RTX 4090 graphic card model for the
entire training process of our experiments. This high-
performance GPU facilitated efficient processing and
accelerated the training times for our models.

In our experiments, we tested five different types of
attention module settings: the basic YOLOv8 without
any attention module, YOLOv8 with our proposed
SCSA and CWM modules, YOLOv8 with Coordi-
nate Attention, YOLOv8 with Shuffle Attention, and
YOLOv8 with ResBlockCBAM as suggested in [21].
We conducted the training over 100 epochs and tested
both the small and medium sizes of the YOLOv8
object detection model. This approach allowed us to
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compare the performance of the modules across dif-
ferent model sizes and demonstrate their generalization
capabilities.

C. Evaluation Metrics

The main evaluation metrics of our experiments are
categorized into three aspects: performance, efficiency,
and speed.

Performance is assessed using the mean Aver-
age Precision (mAP) metrics, specifically mAP50 and
mAP50−95. The mAP50 measures the precision and
recall of the model at an Intersection over Union
(IoU) threshold of 0.5, while mAP50−95 averages the
precision and recall across multiple IoU thresholds
(from 0.5 to 0.95 in steps of 0.05). These metrics are
widely used in object detection and segmentation tasks
within computer vision to evaluate the accuracy and
robustness of the model in detecting and classifying
objects.

Efficiency is represented by the number of Giga
Floating Point Operations per Second (GFLOPs) and
the number of parameters in the model. GFLOPs
measure the computational complexity and the amount
of processing power required for the model to per-
form a forward pass. Lower GFLOPs indicate better
efficiency, as they reflect reduced computational re-
quirements, which can lead to faster inference times
and lower energy consumption.

The number of parameters, which includes the
weights and biases of the model, indicates the model’s
capacity and complexity. A higher number of pa-
rameters can improve the model’s ability to learn
and generalize from data, but it also increases the
computational and memory requirements, potentially
leading to overfitting. Therefore, achieving a balance
between model complexity and efficiency is crucial.

Speed is represented by the inference time of the
model, which measures how quickly the model can
make predictions on new data. Lower inference times
are desirable for real-time applications, where quick
decision-making is critical. In our experiments, we
recorded the inference time to evaluate the practical
usability of our model in real-world scenarios.

By considering these metrics, we comprehensively
evaluated our model’s performance, efficiency, and
speed to ensure it meets the requirements for practical
deployment in clinical settings.

D. Experiment Results

From Table I, it can be observed that the SCSA
module outperformed all other attention modules and
the basic model in both mAP@50 and mAP@50-
95 scores. Specifically, our SCSA module achieved
a 4.1% improvement in mAP@50 over the basic
YOLOv8 architecture. The Coordinate Attention and
Shuffle Attention modules underperformed compared
to the original YOLOv8 model in the small size.
Although the ResCBAM module closely followed the

SCSA module, it was still 2.8% behind in mAP@50
and had significantly more parameters, GFLOPs,
and longer inference time. This indicates a lack of
computational efficiency and speed compared to the
SCSA module. Despite having the highest perfor-
mance scores, the SCSA module maintained similar
GFLOPs, parameters, and inference time as other
lightweight modules such as Coordinate Attention,
Shuffle Attention, and the basic YOLOv8 model.

In the medium-sized YOLOv8 model, the perfor-
mance gap between the models decreased, highlighting
the efficiency of the SCSA module in small and fast
model architectures. The SCSA module still emerged
as the best-performing model, with an mAP@50 score
of 0.811, 2.8% higher than the basic model. The
Shuffle Attention module continued to show the lowest
performance among all modules, and the ResCBAM
module underperformed compared to the Coordinate
Attention module while still having the highest inef-
ficiency in parameters, GFLOPs, and inference time.
The Coordinate Attention module followed the SCSA
module but remained lower in both mAP@50 and
mAP@50-95 scores.

The experimental results demonstrate that the SCSA
module achieves the highest performance levels with-
out sacrificing efficiency, avoiding the computational
overhead that typically results in high inference times
for the architecture.

E. PR Curve Metrics

The YOLOv8 framework provides PR curve graphs
for inbuilt evaluation visualization. Figure 4 represents
the PR curves for the small model. Each graph displays
the PR curves for the basic model and the four types of
attention module-integrated models discussed earlier.
Each PR curve graph contains the PR curves for each
class as well as the average PR curve for all classes
in the dataset.

The comparison of the PR curves shows that the
curves for each class in the SCSA module drop more
slowly and remain higher and more centered than
those in other models, especially in the small-sized
model. This indicates that the SCSA module main-
tains a better balance between precision and recall,
effectively identifying true positives while minimizing
false positives and false negatives. The consistent and
higher PR curves suggest that the SCSA module
performs uniformly across different classes, provid-
ing balanced performance without favoring specific
classes. Additionally, the higher curves indicate better
generalization to the dataset, making the model robust
and reliable.

F. Sample Results Comparison

In Figure 5, there are example prediction results
from the basic model, ResBlockCBAM model, and
SCSA model, all of which are small-sized model
types. The first sample shows a case where all three
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TABLE I
EXPERIMENT RESULTS OF THE ATTENTION MODULES ON YOLOV8 MODEL WITH VARYING SIZES

Model Type Attention Module
Evaluation Metrics

mAP@50 (%) mAP@50-95 (%) Parameters(mil) GFLOPs Inference Time(ms)

YOLOv8 Small

Basic 74.2 58.5 11.1 28.5 3.5
Coordinate 74.2 58.3 11.1 28.5 3.5
ResCBAM 75.2 58.9 16.0 38.1 4.2

Shuffle 74.0 58.0 11.1 28.5 3.5
SCSA 78.0 60.4 11.1 28.5 3.6

YOLOv8 Medium

Basic 78.3 62.0 25.8 78.7 7.2
Coordinate 80.5 63.0 25.9 78.8 7.7
ResCBAM 79.9 63.0 33.8 97.8 9.4

Shuffle 79.7 63.2 25.8 78.7 7.6
SCSA 81.1 63.9 25.8 78.8 8.0

Fig. 4. PR curve metrics for the attention modules in small size YOLOv8.

Fig. 5. Sample prediction results of YOLOv8 and the attention
modules: Basic, ResBlockCBAM, and SCSA

types of architectures successfully detected the skin
lesion and indicated it with a bounding box based on
their prediction results. The second image represents
a case where the ResBlockCBAM and SCSA module-
integrated YOLOv8 architectures could detect the skin
lesion, but the basic module could not. The last image
represents a case where only the SCSA integrated
architecture could detect the skin lesion while the
others failed. These examples illustrate which types
of images are successfully detected across all types of
architectures and which types of images are successful
in architectures with specific modules. These model
predictions also demonstrate how object detection

works on skin lesions, which can play a crucial role
in supporting dermatologic analysis by identifying the
regions and types of skin lesions in the images.

V. CONCLUSION

We proposed the YOLO-SCSA model, which inte-
grates the Spatially Coordinated Shuffling Attention
(SCSA) module and the Center Weighted Masking
(CWM) module into the YOLOv8 architecture to
enhance skin cancer detection. Our comprehensive ex-
periments on the HAM10000 dataset demonstrate that
the proposed model outperforms the baseline YOLOv8
model and other state-of-the-art attention modules in
both mAP@50 and mAP@50-95 metrics, as well as
in various efficiency metrics and speed metrics such
as GFLOPs, parameters, and inference time.

There were some limitations in this architecture.
While the SCSA integration significantly improves
the performance of the architecture, the difference in
outperformance decreases as the size of the model
increases compared to other attention modules. This is
because SCSA utilizes a coordinate attention mecha-
nism that is efficient in small architecture environments
that require less computational load. Nonetheless,
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it still showed better performance than other atten-
tion modules integrated into the YOLOv8 framework.
Therefore, it may be necessary to experiment with
more scenarios where the SCSA module can outper-
form other attention modules in larger architectures.

Overall, the integration of novel attention mech-
anisms and specialized modules into the YOLOv8
framework provides a powerful tool for the automated
detection of skin cancer, offering a significant ad-
vancement over existing models. Future work may
explore further optimizations and adaptations of these
modules for other medical imaging tasks and datasets.
Additionally, enhancements to the module structure
could be considered to improve the performance of
the proposed attention module in larger architectures,
thereby achieving a more significant degree of outper-
formance compared to other attention modules.
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