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Problem Statement – The "Manual Editing" 
Bottleneck
● The Problem: Editing 3D scenes currently requires expert knowledge of complex 

software like Blender. Users must manually fix geometry and textures.

● The Gap: While AI tools now allow us to edit 2D images easily with text (like 
Generative Fill), this capability does not exist natively for 3D scenes.

● Our Objective: We built an automated pipeline to bridge this gap. We chain multiple 
SOTA frameworks together to allow users to edit 3D scenes using only text prompts, 
without touching the geometry manually.



Evolution of Our Approach
● Initial Idea: We originally planned to edit the scene by modifying the 2D training images (e.g., 

inpainting the object out of every frame) and re-training the model.

● The Failure: We found this impractical. 2D diffusion models are stochastic; they generate 
inconsistent textures across different views (e.g., wood floor in View 1, tile in View 2), which 
breaks 3D reconstruction.

● The Pivot: We decided to directly manipulate the 3D framework.

○ We modify the 3D Gaussian structure itself (removing/adding points) to ensure geometric 
consistency.

○ We use 2D images only for texture guidance (inpainting holes).



The Technical Challenge - Volumetric Data

● Representation: We use 3D Gaussian Splatting (3DGS). Unlike meshes, this is a 
"volumetric cloud" of data without clear surfaces.

● The Challenge: Objects in 3DGS have internal density. If you naively delete the visible 
surface, you reveal the opaque inner layers (the "guts") instead of a clean background.

● Goal: We need a method that identifies and removes the entire volume of an object 
based only on 2D text prompts.



Dataset (Mip-NeRF 360)

● The Benchmark: We utilized the Mip-NeRF 360 v2 dataset (Barron et al., CVPR 2022), 
which is the industry standard for evaluating modern 3D reconstruction methods.

● Why this dataset? Unlike synthetic datasets, these are unbounded real-world captures. 
They feature complex central objects surrounded by detailed backgrounds, making them 
significantly harder to edit than simple object scans.

● Our Testbed: We specifically selected two challenging scenes to validate our pipeline:

○ Garden: Outdoor scene with complex thin structures (plants) and lighting.

○ Kitchen: Indoor scene with high clutter and occlusions.



Segmentation - GroundingDINO + SAM2

● The Goal: Translate a text prompt into a precise 2D pixel mask.

● GroundingDINO: Provides semantic understanding. It takes a text prompt (e.g., 
"brown plant") and finds the bounding box .

● SAM2 (Segment Anything): Provides geometric precision. It refines the box into a 
tight pixel mask.

● Why these integration? Manual prompting for 100+ views is impossible. This 
combination automates the detection process across the entire dataset.



Inpainting - Why LaMa over Stable Diffusion?

● Initial Plan: We originally used Stable Diffusion (SDXL) to fill holes left by removed 
objects.

● The Limitation: SDXL is "too creative." Instead of emptying the space, it often 
hallucinates new objects (replacing a plant with a vase or pot).

● Our Choice (LaMa): We replaced it with LaMa (Large Mask Inpainting).

● LaMa specializes in "texture continuation" using Fast Fourier Convolutions. It extends 

the existing floor/wall pattern into the hole without inventing new objects.



3D Generation - GaussianDreamerPro

● The Goal: For "Object Addition," we need to generate new 3D assets from scratch.

● The Framework: We used GaussianDreamerPro, which bridges text-to-image 
diffusion with 3D Gaussian Splatting.

● Integration: We use this as an external asset generator. It produces a .ply point 
cloud (e.g., "coffee cup") which our pipeline then imports and merges into the scene.



Pipeline Overview

System Design: We engineered a multi-stage framework that transforms 2D semantic priors into 
consistent 3D geometric edits.

Phase I: Volumetric Selection (Lifting)

● We aggregate 2D masks from SAM2 into a unified 3D Region of Interest (ROI), utilizing 
depth-based voting to strictly resolve occlusions and filter background noise.

Phase II: Scene Restoration (Inpainting)

● We eliminate the target volume and reconstruct the background texture. Our multi-pass 
depth comparison ensures only true "hole" pixels are inpainted by LaMa.

Phase III: Asset Integration (Synthesis)

● We synthesize new 3D assets via GaussianDreamer and mathematically merge them into the 
scene's coordinate system using a custom spatial placement module.



Phase I - Volumetric Selection (Occlusion-Aware Lifting)

1. Detection Strategy (2D):

● Spatial Disambiguation (Garden): Utilized a 
Reference Box to filter false positives in 
cluttered environments, strictly isolating the 
target plant from surrounding foliage.

● Semantic Detection (Kitchen): Relied on 
Open-Vocabulary Search (Text-Only) for 
unique objects, proving the system can locate 
targets without manual bounding boxes.

2. The Lifting Algorithm (3D):

● Problem: Naive projection of 2D masks selects 
the object and the wall behind it.

● Solution: Depth-Based Voting. We project 
every Gaussian into the view and check its 
depth against the rendered surface.

● Mechanism: A Gaussian only receives a "vote" 
if |Gaussian_Depth - Surface_Depth| < 5%.

● Result: This effectively filters out background 
Gaussians, creating a tight volumetric hull 
around the visible surface.

Objective: Transform 2D semantic masks into a precise 3D Region of Interest (ROI), handling both 
object ambiguity and background occlusion.



Phase II - Scene Restoration (Geometry-Aware Inpainting)

1. Volumetric Removal (The "Artichoke" Solution):

● Problem: 3DGS objects have internal density. 
Naive deletion or alpha-thresholding often 
leaves an opaque inner core.

● Algorithm: Multi-Pass Depth Comparison. We 
render the scene twice: once fully 
(Depth_Full) and once with only the ROI 
(Depth_ROI).

● Logic: A pixel is marked as a "hole" only if 
|Depth_Full - Depth_ROI| < 0.01. This 
mathematically identifies pixels where the ROI 
was the front-most visible object.

2. Texture Completion (LaMa):

● Method: We feed the computed "Hole Masks" 
into LaMa (Large Mask Inpainting).

● Rationale: Unlike diffusion models (SDXL) 
which attempt to generate new objects, LaMa 
utilizes Fast Fourier Convolutions to 
propagate existing background patterns (e.g., 
floor tiles) into the void, ensuring geometric 
continuity.

Objective: Eliminate the target 3D volume entirely and reconstruct the background texture without 
introducing artifacts.



Phase III - Asset Integration (Generative 3D Composition)

1. Asset Generation (External):

● Tool: We utilized GaussianDreamerPro to 
generate standalone 3D Gaussian point 
clouds (PLY files) from text prompts.

● Output: High-fidelity 3D assets (e.g., 
coffee_cup_pro.ply, cowboy_boots_pro.ply) 
with independent internal geometry.

2. The Placement Module (Internal):

● Centroid Alignment: We calculate the 
centroid of the removed ROI to determine 
the target placement coordinates [x, y, z].

● Affine Transformation: We apply specific 
scaling factors (e.g., 0.06 for Cup) and 
spatial offsets defined in the config to align 
the object with the ground plane.

● Merging: The new Gaussians are 
mathematically appended to the optimized 
scene checkpoint, creating a unified 
renderable volume.

Objective: Synthesize new 3D assets and seamlessly integrate them into the scene's coordinate system.



Experiment I - Validation of Volumetric Selection
Objective: Validate the translation of 2D semantic priors into 
coherent 3D volumes.

Visual Pipeline: Progression from Input View to Semantic Box, 
Instance Mask, and Projected 3D ROI.

Case A: Spatial Disambiguation (Garden Scene)

● Strategy: Implemented a Reference Box to strictly limit the 
inference window.

● Result: Successfully rejected false positives (surrounding 
foliage), isolating only the target plant.

Case B: Zero-Shot Lifting (Kitchen Scene)

● Strategy: Utilized Text-Only Detection relying on unique 
semantic features.

● Result: Depth-Based Voting proved critical, successfully 
filtering out background floor pixels to prevent leakage.



Experiment I - Validation of Volumetric Selection



Experiment II - Removal & Inpainting Ablation
Objective: Verify geometric integrity of the removal and compare 
synthesis methods.

Visual Comparison: Holed Render (visualizing the deleted 
volume) vs. LaMa Result vs. SDXL Failure.

Hole Mask Quality: Multi-Pass Depth Comparison accurately 
captured the full object volume (solving the "Artichoke Problem") 
without leaving opaque inner cores.

Ablation Results:

● SDXL (Baseline): Failed due to hallucinations (inserting new 
objects into the void).

● LaMa (Ours): Successfully propagated existing floor 
textures, creating a geometrically consistent empty surface.



Experiment II - Removal & Inpainting Ablation



Experiment III - Generative 3D Composition

Objective: Assess the geometric consistency of external assets merged into the 
scene.

Visual Integration: Generated Asset (.ply) integration into the Merged Scene 
across multiple view angles.

Results:

● Garden: Replaced "Brown Plant" with Coffee Cup
● Kitchen: Replaced "Tracker Toy" with Cowboy Boots
● Geometric Consistency: Added objects exhibit true volumetric behavior. 

Camera rotation confirms correct perspective, occlusion, and depth 
relative to the original scene, distinguishing this from 2D overlays.



Experiment III - Generative 3D Composition



Conclusion

The "Disharmony" Problem: We found that chaining independent SOTA frameworks creates 
significant compatibility gaps.

● Visual Mismatch: Objects generated by GaussianDreamerPro (e.g., Cowboy Boots) 
often look "cartoonish" or have baked-in lighting that clashes with the realistic Mip-NeRF 
360 scene.

● Optimization Failure: We could not robustly relight the inserted objects to match the 
environment shadows.

ROI Lifting Failure (Kitchen Scene): Our "Occlusion-Aware Lifting" algorithm is not universally 
robust.

● Success (Garden): Worked perfectly for distinct objects like the "Brown Plant."

● Failure (Kitchen): Failed on the "Yellow Tracker Toy" due to its complex thin geometry and 
surrounding clutter. The algorithm struggled to separate the object from the floor, leaving 
"awkward remainings" (ghostly artifacts) that even optimization could not fix.



Conclusion

Core Conclusion: Our work proves that a "patchwork" pipeline of separate 2D/3D tools is too 
brittle for general-purpose editing. The gap between 2D masks, 3D geometry, and generative 
assets is too large to bridge manually.

Future Work: We propose moving away from pipelines toward a Unified End-to-End Model 
("Instruct-to-3D").

● The Concept: A single model trained to take [3D Scene + Text] as input and output 
[Updated Gaussian Parameters] directly.

● Benefit: This would natively handle geometric consistency, lighting integration, and 
multi-view coherence without requiring intermediate masks or manual placement logic.



Conclusion

GitHub Repository: https://github.com/jinyoonok2/3DCV-3D-Scene-Edit-with-3DGS

https://github.com/jinyoonok2/3DCV-3D-Scene-Edit-with-3DGS
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